scholarly journals Bandwidth Enhancement of a Dual Band Planar Monopole Antenna Using Meandered Microstrip Feeding

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. R. Ahsan ◽  
M. T. Islam ◽  
M. Habib Ullah ◽  
N. Misran

A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate(εr=15)is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the −10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz–1 GHz) and at upper band is 28% (2.25 GHz–2.95 GHz). The measured maximum gains of −1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


2015 ◽  
Vol 8 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Kamalaveni Ayyadurai ◽  
Ganesh Madhan Muthu

This paper proposed a compact planar monopole antenna operating at 5 GHz (5.180–5.825 GHz) industrial, scientific and medical (ISM) radio band. The antenna constructed with 20 mm × 12 mm radiating element and 25 mm square of the ground plane in FR4 substrate provided −10 dB bandwidth of 1 GHz (5.4–6.4 GHz). To improve the bandwidth, parasitic elements are added with the monopole antenna. A capacitive feed is also incorporated in the design. It observed that the proposed antenna with parasitic elements provides a larger impedance bandwidth of about 3 GHz (5.1–8.1 GHz), which is three-fold improvements over the one without parasitic patches. The prototype of the antenna that operates at 5.8 GHz frequency range is fabricated and characterized using a near-field measurement system. A good agreement is found between the simulation and measured results.


A circular monopole antenna with coplanar wave guide feeding is constructed with the combination of Electromagnetic Band Gap structure for the improvement of bandwidth. A plus shaped defected ground is etched on the ground plane to obtain the EBG characteristics in the proposed antenna model. A complete analysis with respect to reflection coefficient, VSWR, impedance, radiation pattern, current distribution, gain and efficiency are presented in this work. The proposed model occupying the dimension of 50X50X1.6 mm on FR4 substrate with dielectric constant of 4.3. Antenna operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.1 and 10.2 GHz respectively. A peak realized gain of 4.8 dB and peak efficiency more than 80% are the key features of the current design.


2020 ◽  
Vol 5 (3) ◽  
pp. 301-303
Author(s):  
G. Viswanadh Raviteja ◽  
T. Sarath ◽  
M. Vinethra Naidu ◽  
S. Baka Vikash ◽  
K. Sudheer

In this research article, a simple and compact dual-band microstrip monopole antenna is discussed. A CPW feed is given to patch consisting of rectangular coplanar ground sheets on either side, truncated their centers with smaller rectangular sheets giving the shape of rectangular rings. The proposed antenna is designed using FR4 epoxy substrate having dielectric constant 4.4 and thickness 1.6mm. The main element in the antenna is four inverted L shaped stubs which govern the impedance bandwidth of the antenna. Simulations are carried out using HFSS software. The S11 plot for the proposed antenna showed dual-band characteristics with a lower band ranging from 1.09GHz to 2.33 GHz (1.24 GHz bandwidth) and the upper band covering 3.01 GHz to 10.738 GHz (7.728 GHz bandwidth). The proposed antenna bandwidth ranges of the proposed antenna will be covering the GPS, PCS and UMTS applications for lower band and UWB applications for upper band. The antenna exhibited a peak of 3.01 dB and 4.54 dB at 1.89 GHz and 9.45 GHz. Simulations are carried and all the important findings are plotted.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 475
Author(s):  
Shahid M Ali ◽  
Cheab Sovuthy ◽  
Sima Noghanian ◽  
Zulfiqur Ali ◽  
Qammer H. Abbasi ◽  
...  

The human body is an extremely challenging environment for wearable antennas due to the complex antenna-body coupling effects. In this article, a compact flexible dual-band planar meander line monopole antenna (MMA) with a truncated ground plane made of multiple layers of standard off-the-shelf materials is evaluated to validate its performance when worn by different subjects to help the designers who are shaping future complex on-/off-body wireless devices. The antenna was fabricated, and the measured results agreed well with those from the simulations. As a reference, in free-space, the antenna provided omnidirectional radiation patterns (ORP), with a wide impedance bandwidth of 1282.4 (450.5) MHz with a maximum gain of 3.03 dBi (4.85 dBi) in the lower (upper) bands. The impedance bandwidth could reach up to 688.9 MHz (500.9 MHz) and 1261.7 MHz (524.2 MHz) with the gain of 3.80 dBi (4.67 dBi) and 3.00 dBi (4.55 dBi), respectively, on the human chest and arm. The stability in results shows that this flexible antenna is sufficiently robust against the variations introduced by the human body. A maximum measured shift of 0.5 and 100 MHz in the wide impedance matching and resonance frequency was observed in both bands, respectively, while an optimal gap between the antenna and human body was maintained. This stability of the working frequency provides robustness against various conditions including bending, movement, and relatively large fabrication tolerances.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sajid Aqeel ◽  
M. H. Jamaluddin ◽  
Aftab Ahmad Khan ◽  
Rizwan Khan ◽  
M. R. Kamarudin ◽  
...  

A novel dual-band, single element multiple input multiple output (MIMO) dielectric resonator antenna (DRA) with a modest frequency tuning ability is presented in this communication. The proposed antenna operates at GPS L1/Bluetooth/Wi-Fi/LTE2500/WLAN2400 frequency bands. A single dielectric resonator element is fed by two coaxial probes to excite the orthogonal modes. A couple of slots are introduced on the ground plane to improve the isolation between antenna ports. The slots also serve the purpose of reconfiguration in the lower band on placement of switches at optimized locations. The measured impedance bandwidth is 5.16% (1.41–1.49 GHz) in the lower band and 26% (2.2–2.85 GHz) in the higher band. The lower band reconfigures with an impedance bandwidth of 6.5% (1.55–1.65 GHz) when PIN diodes are switched ON. The gain, efficiency, correlation coefficient, and diversity gain of the MIMO DRA are presented with a close agreement between simulated and measured results.


2018 ◽  
Vol 15 (3) ◽  
pp. 330-335
Author(s):  
Saadi Djidel ◽  
Mohamed Bouamar ◽  
Djamel Khedrouche

PurposeModern wireless communication application requires an antenna system to meet the requirements of miniaturization and wideband characteristic. In recent years, several antenna designs, that meet these requirements, have been proposed in the literature. In this context, the purpose of this paper is to design a new microstrip monopole antenna with a bandwidth enhancement and size reduction for ultra wideband application.Design/methodology/approachThe patch, of leaf of a plant shape, the feed line and the ground plane are printed on the inexpensive FR4 substrate material with permittivity 4.4 and loss tangent 0.02. To obtain optimal dimensions, a parametric study is conducted through numerical computations by using electromagnetic simulators HFSS and CST. A prototype of the optimized antenna is fabricated and subjected to a series of simulations and measurements.FindingsThe measurement results show a −10 dB impedance bandwidth of 6.7 GHz (3.5 GHz-10.2 GHz) which can cover the whole bandwidth requirements of an ultra wideband application. The designed antenna exhibits nearly symmetric and omnidirectional radiations patterns over the operating band, which is a sought-after behavior in microstrip patch antennas and has overall size of 35 × 31 mm2.Originality/valueThe proposed microstrip monopole antenna is very useful for modern wireless communications systems because of its compact size, its capability of covering the whole ultra wideband frequency band and its good radiation characteristics.


2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document