scholarly journals Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjeev Kumar Verma ◽  
Sudhir Singh Bhadauria ◽  
Saleem Akhtar

Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

Author(s):  
Nour Eldeen Abo Nassar

Reinforced concrete (RC) structures have the ability to be extremely durable and able to withstand a diversity of different environmental cases. However, failure in these structures still happens due to precocious reinforcement erosion. If steel reinforcement corrodes in concrete structures, this leads to a decrease in the lifetime and durability of these structures, which cause early failure of the structures, costing significantly to inspect and maintain the deteriorating structures. Then, monitoring of reinforcement corrosion is of great importance to prevent early failure of structures. Structures corrosion can be decreased through correct monitoring and taking appropriate control measures in the appropriate period of time. When steel bars corrode, the formation of rust causes the concrete to be separated from the steel and then thereafter. In case this issue is not addressed, it may influence the entire structure. This paper attempts to present a comprehensive review of corrosion of rebar in RC structures, its mechanisms, monitoring and prevention.


2013 ◽  
Vol 438-439 ◽  
pp. 784-788
Author(s):  
Jin Wu

Corrosion of steel bars has a serious influence on durability and safety of reinforced concrete structures, which should be effectively monitored for the maintenance of reinforced concrete structures. This paper reviews several main techniques firstly, and presents the ongoing work at Nanjing University of Aeronautics and Astronautics to develop sensors to monitor the corrosion of reinforcement in concrete. It is hoped that the paper will be helpful to the field engineers and laboratory researchers who are monitoring and studying the corrosion of reinforcement in concrete structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fanxiu Chen ◽  
Zuquan Jin ◽  
Endong Wang ◽  
Lanqin Wang ◽  
Yudan Jiang ◽  
...  

AbstractConcrete cracking caused by corrosion of reinforcement could significantly shorten the durability of reinforced concrete structure. It remains critical to investigate the process and mechanism of the corrosion occurring to concrete reinforcement and establish the theoretical prediction model of concrete expansion force for the whole process of corrosion cracking of reinforcement. Under the premise of uniform corrosion of reinforcing steel bars, the elastic mechanics analysis method is adopted to analyze the entire process starting from the corrosion of steel bars to the cracking of concrete due to corrosion. A relationship model between the expansion force of corrosion of steel bars and the surface strain of concrete is established. On the cuboid reinforced concrete specimens with square cross-sections, accelerated corrosion tests are carried out to calibrate and verify the established model. The model can be able to estimate the real-time expansion force of reinforced concrete at any time of the whole process from the initiation of steel corrosion to the end of concrete cracking by measuring the surface strain of concrete. It could be useful for quantitative real-time monitoring of steel corrosion in concrete structures.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Akter Hosen ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam

Nowadays, the use of near surface mounted (NSM) technique strengthening reinforced concrete (RC) structural members is going very popular. The failure modes of NSM strengthened reinforced concrete (RC) beams have been shown to be largely due to premature failure such as concrete cover separation. In this study, CFRP U-wrap end anchorage with CFRP fabrics was used to eliminate the concrete cover separation failure. A total of eight RC rectangular beam specimens of 125 mm width, 250 mm depth, and 2300 mm length were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM steel bars and the remaining four specimens were strengthened with NSM steel bars together with the U-wrap end anchorage. The experimental results showed that wrapped strengthened beams had higher flexural strength and superior ductility performance. The results also show that these beams had less deflection, strain, crack width, and spacing.


2010 ◽  
Vol 36 ◽  
pp. 176-181
Author(s):  
Xian Feng He ◽  
Shou Gang Zhao ◽  
Yuan Bao Leng

The corrosion of steel will have a bad impact on the safety of reinforced concrete structure. In severe cases, it may even be disastrous. In order to understand the impact of steel corrosion on the structure, tests are carried out to study corrosion and expansion rules of steel bars as well as the impact rules of corrosion on bond force between steel and concrete. The results show that wet and salty environment will result in steel corrosion; relatively minor corrosion will not cause expansion cracks of protection layers; when steel rust to a certain extent, it will cause cracks along the protection layer; when there exists minor corrosion in steel and the protection layer does not have expansion cracks, the bond force is still large and rapidly decreases as the corrosion rate increases.


2015 ◽  
Vol 738-739 ◽  
pp. 889-892
Author(s):  
Qiang Li ◽  
Hong Fa Yu ◽  
Jing Tong

Cracking of the cover concrete due to steel corrosion is considered as one of the major issues of durability of reinforced concrete (RC) structures. This paper tentatively studies the feasibility of DIC to reinforcement corrosion induced concrete fracture and cover cracking measurement. Advantages and limitations of DIC-based non-contact full-field measurement for corrosion induced concrete fracture and cover cracking are discussed. Drawbacks in this test need improvement are pointed out and test method for further study of whole process of simulating the real reinforced concrete cracking is put forward.


Author(s):  
Mohamed A. Ismail ◽  
Han-Seung Lee ◽  
Mohd Warid Hussin

Corrosion of steel reinforcement embedded in concrete is one of the main causes of degradation of reinforced concrete structures. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride ingress into concrete. That degradation has a severe impact on the structure in terms of maintenance and rehabilitation costs. Therefore, early detection of reinforcement corrosion is important for efficient maintenance, repair and planning. Meanwhile, the evaluation of the corrosion of reinforcement by non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measure the polarization resistance, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. In this study, measurement of corrosion by using the mini-sensor is compared with the measured results by CM-II to verify the validity of the newly developed mini senor. Results show that there are agreement in trends of the parameters measured and as such the developed mini sensor has a promising start to be used.


2011 ◽  
Vol 291-294 ◽  
pp. 2159-2163
Author(s):  
Yang Hang Shi ◽  
Lu Zhang ◽  
De Hai Yu

Based on the mechanism, influencing factors and their fuzziness of reinforced concrete (RC) cracking caused by corrosion of steel bars, fuzzy reliability of RC durability failure due to corrosion expansion of steel bars is analyzed adopting the mathematic model of fuzzy probability. The method having the advantages of explicit concept, convenient calculation and stable results which is proved by the examples accords with the actual situation and can be applied to the engineering practice.


2021 ◽  
pp. 147592172110417
Author(s):  
Shunquan Zhang ◽  
Zijian Jia ◽  
Yuanliang Xiong ◽  
Ruilin Cao ◽  
Yamei Zhang ◽  
...  

In this research, four embedded ultrasonic piezoelectric transducers were combined to form cross pair and opposite pair monitoring schemes for continuously monitoring the damage to different strength grades of concrete caused by the corrosion of reinforcements under accelerated corrosion conditions. The damage process was analyzed by combining the electrochemical effects of steel corrosion, that is, half-cell potential and galvanic current tests. Results show that the embedded ultrasonic transducer method can detect damage of concrete during steel corrosion and that each stage of damage can be determined from the plots of ultrasonic transducer data versus corrosion rate. The results further indicate that a combination of cross pair and opposite pair testing methods can more comprehensively reflect the damage to concrete caused by the expansion of corrosion of steel bars, than a single testing method. Since electrochemical testing can only depict the corrosion state of steel rebars, it is beneficial to use embedded ultrasonic measurements to monitor the damage process of concrete. The differences in damage between different strength grades of concrete, that is, the resistance to corrosion of steel bars and brittle failure, can be obtained from the plots of ultrasonic transducer data.


Sign in / Sign up

Export Citation Format

Share Document