scholarly journals The Active Fractional Order Control for Maglev Suspension System

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Peichang Yu ◽  
Jie Li ◽  
Jinhui Li

Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditionalPDcontroller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based onLQRis employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.

Author(s):  
Shiping Yao ◽  
Colin Morgan ◽  
Nigel J. Leighton

Abstract The basic characteristic of a conventional spring is that of a constant rate, that is a linear force-displacement relationship. If, however, a flat, thin leaf spring is end-loaded past its buckling point it will deform into a curve and the resulting force-displacement relationship can be made virtually flat; that is a very low effective rate is seen, once the buckling force is exceeded. A novel form of automotive active suspension system proposed by Leighton & Pullen (1994) relies upon the “buckled spring” element acting through a variable geometry wishbone assembly to provide wheel to body forces that are controllable by a low power actuator but are virtually independent of wheel to body displacement. The dynamic behavior of the spring element is also significant, since resonance effects may affect the vibration isolating properties of the suspension system and may result in unstable modes of motion. This paper presents a rigorous derivation of the static and dynamic characteristic of the spring element and of the effect of design compromises that are essential for practical application. Comparison of the experimental and simulation results shows that the simulation can be used to predict the static and dynamic performance of the spring.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 510
Author(s):  
Marcel Nicola ◽  
Claudiu-Ionel Nicola

Starting with the problem of connecting the photovoltaic (PV) system to the main grid, this article presents the control of a grid-connected PV system using fractional-order (FO) sliding mode control (SMC) and FO-synergetic controllers. The article presents the mathematical model of a PV system connected to the main grid together with the chain of intermediate elements and their control systems. To obtain a control system with superior performance, the robustness and superior performance of an SMC-type controller for the control of the udc voltage in the DC intermediate circuit are combined with the advantages provided by the flexibility of using synergetic control for the control of currents id and iq. In addition, these control techniques are suitable for the control of nonlinear systems, and it is not necessary to linearize the controlled system around a static operating point; thus, the control system achieved is robust to parametric variations and provides the required static and dynamic performance. Further, by approaching the synthesis of these controllers using the fractional calculus for integration operators and differentiation operators, this article proposes a control system based on an FO-SMC controller combined with FO-synergetic controllers. The validation of the synthesis of the proposed control system is achieved through numerical simulations performed in Matlab/Simulink and by comparing it with a benchmark for the control of a grid-connected PV system implemented in Matlab/Simulink. Superior results of the proposed control system are obtained compared to other types of control algorithms.


Author(s):  
Zeyad Abdulwahid Karam ◽  
Osama A. Awad

Improving the dynamic performance of an automobile suspension system is considered as the main demand for comfortable and safe passenger travelling. From all previously proposed and implemented works, it is noticed that there are other factors that need to be considered to raising the car holding and stability in the road for improved passenger comfort when travelling. The minimization of car body displacement and oscillation time after exposure to road disturbances have been adopted in this work due to their contribution in raising the car holding and stability. The improvement in these features was maintained via a robust control methodology. The Fractional Order PID controller tuned by the Whales Optimization Algorithm (WOA) and Particle Swarm Optimization (PSO) algorithm is suggested in this work as a robust controller to reduce the effect of these demerits. In this paper, an active quarter car suspension nonlinear system is designed for the presented goals using a robust controller. Minimizing the displacement of the car body and reducing the damping frequency are achieved via a nonlinear control strategy using the fractional order PID controller, which can maintain the required characteristics. Tuning the parameters of the FOPID controller is performed by using the Whales Optimization Algorithm (WOA). Robustness of the FOPID controller is examined and proved to withstand a system parameter variation of ±12 % in all system parameters and a maximum of ±80 % in controller parameter variation. Simulation outcomes also indicate a considerably improved performance of the active suspension system with the fractional order PID controller over the traditional PID.


2011 ◽  
Vol 130-134 ◽  
pp. 2438-2442
Author(s):  
Yun Zhang ◽  
Kong Kang Zhou

The mathematical model of electric control air suspension system was built and the intelligent control strategy was put forward in this paper. Then the related simulation and the bench test of 1/4 model of electric control air suspension system were carried out, by which the influence of electric air suspension and its control system to the vehicle dynamic performance was analyzed. The test results were identical with the simulation, which demonstrated that the electric control air suspension system could improve the automobile riding comfort performance. And the research contents had laid the foundation for the future research of electric control air suspension.


2013 ◽  
Vol 273 ◽  
pp. 636-640
Author(s):  
Ming Qiu Li ◽  
Rong Chun Sun

Classic control algorithm can improve dynamic performance of opto-electronic tracking system, but the tracking system often has little robust performance. From the standpoint of inproving robust performance, modern robust control technology was adopted to design the controller of opto-electronic tracking system in this paper. On the basis of considering the system tracking precision requirement and main disturbance, the mathematical model of the system augmented objict was established. By repeatly testing, the suitable weighted functions were selected. Finally, the robust controller of opto-electronic tracking system was designed by synthesis method of modern robust control theory. The simulation result shows that the adjusting time of the system is 0.3S, and it can satisfy the requirements of the tracking speed. Robust controller has improved the system dynamic response characteristics and makes the system fast and no overshoot, and the opto-electronic tracking system has stronger robust stability and robust performance.


2021 ◽  
Vol 4 (3) ◽  
pp. 50
Author(s):  
Preeti Warrier ◽  
Pritesh Shah

The control of power converters is difficult due to their non-linear nature and, hence, the quest for smart and efficient controllers is continuous and ongoing. Fractional-order controllers have demonstrated superior performance in power electronic systems in recent years. However, it is a challenge to attain optimal parameters of the fractional-order controller for such types of systems. This article describes the optimal design of a fractional order PID (FOPID) controller for a buck converter using the cohort intelligence (CI) optimization approach. The CI is an artificial intelligence-based socio-inspired meta-heuristic algorithm, which has been inspired by the behavior of a group of candidates called a cohort. The FOPID controller parameters are designed for the minimization of various performance indices, with more emphasis on the integral squared error (ISE) performance index. The FOPID controller shows faster transient and dynamic response characteristics in comparison to the conventional PID controller. Comparison of the proposed method with different optimization techniques like the GA, PSO, ABC, and SA shows good results in lesser computational time. Hence the CI method can be effectively used for the optimal tuning of FOPID controllers, as it gives comparable results to other optimization algorithms at a much faster rate. Such controllers can be optimized for multiple objectives and used in the control of various power converters giving rise to more efficient systems catering to the Industry 4.0 standards.


2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


Sign in / Sign up

Export Citation Format

Share Document