Study on Intelligent Control of Electric Control Air Suspension

2011 ◽  
Vol 130-134 ◽  
pp. 2438-2442
Author(s):  
Yun Zhang ◽  
Kong Kang Zhou

The mathematical model of electric control air suspension system was built and the intelligent control strategy was put forward in this paper. Then the related simulation and the bench test of 1/4 model of electric control air suspension system were carried out, by which the influence of electric air suspension and its control system to the vehicle dynamic performance was analyzed. The test results were identical with the simulation, which demonstrated that the electric control air suspension system could improve the automobile riding comfort performance. And the research contents had laid the foundation for the future research of electric control air suspension.

2014 ◽  
Vol 945-949 ◽  
pp. 987-991
Author(s):  
Bang Sheng Xing ◽  
Ning Ning Wang ◽  
Le Xu

The nonlinear stiffness and damping properties of the hydro-pneumatic suspension system are introduced, and the nonlinear mathematical model of it is established. Using MATLAB 2009b to establish the computer simulation program and draw out the nonlinear stiffness curve and damping properties curve of the hydro-pneumatic suspension system. Then, researching the influences of related parameters' changes on the nonlinear stiffness and damping properties of the hydro-pneumatic suspension system. The simulation of vehicle dynamic performance research's foundation is provided.


Author(s):  
Ruochen Wang ◽  
Xiangpeng Meng ◽  
Dehua Shi ◽  
Xiaoliang Zhang ◽  
Yuexia Chen ◽  
...  

A vehicle suspension system with inerters is proposed and its dynamic model is established to analyse its dynamic performance. The structure of the suspension with inerters is also constructed and its form and structural parameters are optimized. Then the rack-and-pinion inerter and the bench test system of suspension are designed. Based on the simulation, bench test is conducted. It has shown that theoretical research is consistent with the test results. Moreover, the structure of the suspension with inerters is so simple, that it can be easily achieved. Consequently the passenger comfort is greatly enhanced and the comprehensive performance of the car has been coordinated. Therefore, simulated analysis and experimental tests in this paper can provide evidence for further research on suspension with inerters.


Author(s):  
Guangzhong Xu ◽  
Holger M. Roser ◽  
Nong Zhang

This paper presents a detailed experimental study to quantitatively assess the performance of a roll-plane Hydraulically Interconnected Suspension (HIS) system in articulation (warp) mode. This mode is critical for better off-road vehicle handling, particularly in utility vehicles. Articulation of a four-wheel vehicle describes the in-phase motion of two diagonally opposed wheels, with adjacent wheels moving out of phase. The widely used anti-roll bars, required for increased roll resistance, also stiffen the articulation mode, which may result in one or more wheels losing ground contact on uneven surfaces, compromising vehicle stability and safety. Yet roll-plane HIS systems are capable of decoupling vehicle roll from articulation. A comparative experimental analysis of HIS and conventional anti-roll bars has been conducted to evaluate vehicle dynamic performance at full-car level under articulation excitation. Test results demonstrate that the HIS system has a negligible effect on wheel travel in articulation mode, offering a significant improvement in vehicle handling and safety over conventional anti-roll bars.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3218 ◽  
Author(s):  
Sun ◽  
Lin ◽  
Geng ◽  
Li ◽  
Jiang

To solve the contradiction between handling stability and ride comfort of vehicles with interconnected air suspension system (IASS) and reduce the energy consumption of air suspension with adjustable spring stiffness, a coordinated control for dynamic performance was designed based on the logic of switching interconnection modes and game control for the damper. The control system consists of a switching controller for air suspension interconnection modes and a distribution controller for the damping force. The switching controller determines the optimal air suspension interconnection mode by calculating the vehicle dynamic performance index in real-time. The distribution controller achieves a distribution for optimal damping force based on an infinite time differential game. veDYNA software that is a vehicle dynamics analysis software based on MATLAB/Simulink was used to verify the algorithm, and the accuracy was verified by a bench test. Finally, the results show this coordinated system can significantly improve the ride comfort and restrain the pitching motion. Compared with traditional suspension, the vertical acceleration decreases by 18.32% and the dynamic stroke decreases by more than 10% under the straight condition; the vertical acceleration decreases by 12.24% and the roll angle decreases by 1.26% under the steering condition.


2014 ◽  
Vol 1006-1007 ◽  
pp. 304-307
Author(s):  
Qi Yao Yang ◽  
Jian Zhong Zhang ◽  
Yu Ping Ma ◽  
Yue Bo Wu ◽  
Wen Na Zhang

In order to improve vehicles comfort, electronically controlled air suspension is taken as study object. We designed the PID controller, which can regulates stiffness and height of air spring. Taking stiffness of air suspension as control variables, and the acceleration of the sprungmass as target values, one-quarter vehicle model of air suspension for bench test is established, then PID control system was tested on the bench.The bench test results show that the PID control algorithm can improve vehicle ride performance.


2014 ◽  
Vol 494-495 ◽  
pp. 146-149
Author(s):  
Zhen Bo Wang ◽  
Cui Ming Lu ◽  
Hai Zhu Huang ◽  
Shu Zhi Li ◽  
Liang Zhang

It is difficult to measure the dynamic characteristic accurately. In the traditional simulation system, some parameters about dynamic characteristic usually are neglected. Aiming to the key problem, this paper presents a simulation calculation method to calculate the engine output power which considers the unstable condition of the actual running. According to the vehicle dynamic equation and actual running conditions of the vehicle, the mathematical model of dynamic characteristic is established. The vehicle dynamic simulation system is developed using the VC++6.0. Measurement experiment of dynamic characteristic of Hover H6 is performed. The experimental results agree well with the simulation results. This indicates that this method can accurately calculate the vehicle dynamic parameters and provide for scientific basis on the vehicle design.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Peichang Yu ◽  
Jie Li ◽  
Jinhui Li

Maglev suspension system is the core part of maglev train. In the practical application, the load uncertainties, inherent nonlinearity, and misalignment between sensors and actuators are the main issues that should be solved carefully. In order to design a suitable controller, the attention is paid to the fractional order controller. Firstly, the mathematical model of a single electromagnetic suspension unit is derived. Then, considering the limitation of the traditionalPDcontroller adaptation, the fractional order controller is developed to obtain more excellent suspension specifications and robust performance. In reality, the nonlinearity affects the structure and the precision of the model after linearization, which will degrade the dynamic performance. So, a fractional order controller is addressed to eliminate the disturbance by adjusting the parameters which are added by the fractional order controller. Furthermore, the controller based onLQRis employed to compare with the fractional order controller. Finally, the performance of them is discussed by simulation. The results illustrated the validity of the fractional order controller.


Author(s):  
Premandanda Pradhan ◽  
Dharmendra Singh

Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


Sign in / Sign up

Export Citation Format

Share Document