scholarly journals Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Raúl Gregor ◽  
Yoshihiko Takase ◽  
Jorge Rodas ◽  
Leonardo Carreras ◽  
Derlis Gregor ◽  
...  

The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT) coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV) systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT) using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS) by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs) is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

This paper proposes a design of solar tracking system for capturing maximum amount of solar energy by rotating the solar panel. From sun rise to sun set, the sun changes its direction several times due to which the static solar panel fails to capture maximum solar energy throughout the day. Therefore, it is required to develop a system that is capable of generating electrical energy by making use of maximum amount of solar energy. This paper discloses about the rotatable solar tracking system capable of rotating along the sun direction for tracking maximum amount of solar energy. This advanced technology not only utilize the solar energy more effectively but also improves the efficiency of whole system.


Author(s):  
Kamen Milkov Yanev ◽  
Pran Mahindroo ◽  
Kelebaone Tsamaase

The movement of the earth leads to constant change in the intensity and the angle of solar irradiation. As a consequence, the cells of photovoltaic (PV) modules are only able to convert a fraction of the light energy from the sun into electric energy. A tracking system constantly adapts the angle of PV modules to face the sun, so that the irradiation angle and the light intensity remain constant and a maximum of electrical energy can be generated. This not only helps to exploit every minute of sunshine but also to make the best use of diffuse light all year round. The aim of this research is to design a robust tracking control system that will point the PV modules to the brightest point in the sky. This objective is achieved by the design of a specialized robust controller and application of the D-partitioning analysis method.


2018 ◽  
Vol 43 ◽  
pp. 01014 ◽  
Author(s):  
Imam Abadi ◽  
Choirul Imron ◽  
Mardlijah ◽  
Ronny D. Noriyati

Characteristic I-V of photovoltaic is depended on solar irradiation and operating temperature. Solar irradiation particularly affects the output current where the increasing solar irradiation will tend to increase the output current. Meanwhile, the operating temperature of photovoltaic module affects the output voltage where increasing temperature will reduce the output voltage. There is a point on the I-V curve where photovoltaic modules produce maximum possible output power that is called Maximum Power Point (MPP). A technique to track MPP on the I-V curve is known as Maximum Power Point Tracking (MPPT). In this study, the MPPT has been successfully designed based on Adaptive Neuro-Fuzzy Inference System (ANFIS) and integrated with solar tracking system to improve the conversion efficiency of photovoltaic modules. The designed ANFIS MPPT system consists of current and voltage sensors, buck-boost converter, and Arduino MEGA 2560 microcontroller as a controller. Varying amounts of lamp with 12V 10W rating arranged in series is used as load. Solar tracking system that is equipped with MPPT ANFIS able to increase the output power of photovoltaic modules by 46.198% relative to the fixed system when 3 lamps is used as load.


Author(s):  
Alex Wenda ◽  
Rendy Dwi Putra

This research optimizes the absorption of solar energy in solar panels by designing mechanical systems that can move solar panels in the direction of incoming sunlight. Light-sensitive sensors are used to track the sun. The solar tracking system is designed using two axes, namely rotation axis and the tilt axis. Both axes are driven by servo motors based on light-sensitive sensors. The system was developed using an ATmega328 microcontroller unit. The test results found that using solar tracking the amount of energy produced was greater than static solar panels. Radiation generated between solar tracking and static sun can increase by 55.2%.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 637
Author(s):  
Marcin Brzezicki ◽  
Paweł Regucki ◽  
Jacek Kasperski

A building’s facade is its main interface with the external environment, as it controls almost all energy flows in the building—losses and gains. In this context, the most recent invention of adaptive façades allows for the introduction of an optimized system for both daylight management and electrical energy production. The authors of the presented paper propose a novel adaptive façade system that is equipped with vertical shading fins of 1 × 4 m that are covered with PV panels. The fins are kinetic and rotate around a vertical axis in order to optimize solar irradiation for producing electricity. The presented adaptive façade is analyzed in two stages. Firstly, the number of vertical shading fins is optimized in the context of useful daylight illuminance (UDI) and daylight glare probability (DGP) using Radiance-cored software. Next, two scenarios of PV installation are verified for fixed and the Sun-tracking solution. The results show that the Sun-tracking system is more efficient than the fixed one, but electricity production is only increased by 3.21%. The reason for this is the fact that—while following the Sun’s azimuth position—fins shade each other and reduce the effective area of the adjacent PV panels. Based on this, the authors conclude that the Sun-tracking system might be justified due to its protective or decorative function and not because of its improved effectiveness in generating electrical energy.


2014 ◽  
Vol 704 ◽  
pp. 350-354
Author(s):  
Muhammad Ikram Mohd Rashid ◽  
Nik Fadhil bin Nik Mohammed ◽  
Suliana binti Ab Ghani ◽  
Noor Asiah Mohamad

The energy extracted from photovoltaic (PV) or solar thermal depends on solar insolation. For the extraction of maximum energy from the sun, the plane of the solar collector should always be normal to the incident radiation. Sun trackers move the solar collector to follow the sun trajectories and keep the orientation of the solar collector at an optimal tilt angle. Energy efficiency of solar PV or solar thermal can be substantially improved using solar tracking system. In this paper, an automatic solar tracking system has been designed and developed using DC motor on a mechanical structure with gear arrangement. The movements of two-axis solar trackers for the elevation and azimuth angles are programmed according to the mathematical calculation by using the Borland C++ Builder. Performance of the proposed system over the important parameter like solar radiation received on the collector, maximum hourly electrical power has been evaluated and compared with those for fixed tilt angle solar collector.


Author(s):  
Balaji K ◽  
Dharshan T R ◽  
Mahendran P ◽  
Priyadharsini R

The renewable energies, solar energy is the only energy gained its popularity and importance quickly. Through the solar tracking system, we can produce an abundant amount of energy which makes the solar panel’s workability much more efficient. Perpendicular proportionality of the solar panel with the sun rays is the reason lying behind its efficiency. Pecuniary, its installation charge is high provided cheaper options are also available. The main control circuit is based upon NodeMcu microcontroller. Programming of this device is done in the manner that the LDR sensor, in accordance with the detection of the sun rays, will provide direction to the DC Motor that in which way the solar panel is going to revolve. Through this, the solar panel is positioned in such a manner that the maximum amount of sun rays could be received. Though a hike in the efficiency of the solar panel had a handsome increase still perfection was a far-fetched goal for it. Below 40%, most of the panels still hover to operate. Consequently, peoples are compelled to purchase a number of panels in order to meet their energy demands or purchase single systems with large outputs. Availability of the solar cells types with higher efficiencies is on provided they are too costly to purchase. Ways to be accessed for increasing solar panel efficiencies are a plethora in number still one of the ways to be availed for accomplishing the said purpose while reducing costs, is tracking. Tracking helps in the wider projection of the panel to the Sun with increased power output. It could be dual or single axis tracker


Author(s):  
Fawzi M. Al-Naima ◽  
Ramzy S. Ali ◽  
Ahmed J. Abid

This article presents the design of a reliable, accurate, and easy to install solar dual axis tracking system. The system utilizes the GPS for fixing the time, date and location in terms of longitude and latitude. Approximations having high accuracy of the astronomical equations to represent the declination angle and the equation of time are selected to determine the sun locations needed by the designed tracking system in any chosen location on earth. The proposed system is standalone, accurate, durable, reliable, and cost efficient. Annual energy assessments of the system are also given.


2015 ◽  
Vol 793 ◽  
pp. 353-357
Author(s):  
F.S. Abdullah ◽  
H.M. Nuhafiz ◽  
O. Mardianaliza ◽  
A. Yusof ◽  
Noor Anida

Solar tracker is a device that detects the movement of the sun. Solar tracker receive maximum sun ray in order to produce the maximum power supply by the photovoltaic (PV) panels system. It also depends on the environment factor such as solar irradiation and temperature of the panels. This paper presents the development of the automatic solar tracking system, the construction of the sensor circuit, programming of the control system and also its performance analysis. This automatic solar tracking system is designed with an electronic circuit control using PIC that can trigger the dc motors when the LDR sensors detect sunlight. DC motor will move vertical and 360 ̊ horizontal to increase efficiency of sunlight to the solar panel. Solar panel for the project gets power supply from the battery. The battery will be charged using power from the solar panel.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Freddy Ordóñez ◽  
Carlos Morales ◽  
Jesús López-Villada ◽  
Santiago Vaca

Solar tracking is a major alternative to increase the electric output of a photovoltaic (PV) module, and therefore, improves the global energy collected by PV systems. Nonetheless, solar-tracking PV systems require more resources and energy than static systems. Additionally, the presence of cloudiness and shadows from near buildings may reduce the profitability of these systems. Therefore, their feasibility must be assessed in order to justify their application. In equatorial latitudes, the sun's movement through the sky is in the zenith East–West axis. It may be advantageous, since the best tilt in such latitudes is the horizontal. In these terms, the main objective of this research is to numerically assess the performance of a PV array with solar tracking and under typical operation conditions in equatorial latitudes. For this, the assessment of the solar resource in Quito was analyzed in first place. Then, the comparison between three solar arrays was studied to evaluate the feasibility of solar tracking (two-axes tracking, horizontal one-axis tracking, and horizontal fixed). Additionally, the impact of cloudiness and shadows in the system was analyzed. The results showed that the horizontal one-axis tracking is the most beneficial option for equatorial latitudes as the two-axes tracking system only surpasses the gains of the one-axis tracking marginally. Furthermore, the use of a strategy to place the PV modules horizontally in cloudy conditions seems to be marginally advantageous. Finally, the shadows created from neighboring buildings in the East and West of the system may reduce considerably the solar irradiation on the PV-array (not the ones in the north and south).


Sign in / Sign up

Export Citation Format

Share Document