scholarly journals Deep Convolutional Neural Networks for Hyperspectral Image Classification

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Hu ◽  
Yangyu Huang ◽  
Li Wei ◽  
Fan Zhang ◽  
Hengchao Li

Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which are the input layer, the convolutional layer, the max pooling layer, the full connection layer, and the output layer. These five layers are implemented on each spectral signature to discriminate against others. Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than some traditional methods, such as support vector machines and the conventional deep learning-based methods.

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2592
Author(s):  
Xuemin Cheng ◽  
Yong Ren ◽  
Kaichang Cheng ◽  
Jie Cao ◽  
Qun Hao

In this study, we propose a method for training convolutional neural networks to make them identify and classify images with higher classification accuracy. By combining the Cartesian and polar coordinate systems when describing the images, the method of recognition and classification for plankton images is discussed. The optimized classification and recognition networks are constructed. They are available for in situ plankton images, exploiting the advantages of both coordinate systems in the network training process. Fusing the two types of vectors and using them as the input for conventional machine learning models for classification, support vector machines (SVMs) are selected as the classifiers to combine these two features of vectors, coming from different image coordinate descriptions. The accuracy of the proposed model was markedly higher than those of the initial classical convolutional neural networks when using the in situ plankton image data, with the increases in classification accuracy and recall rate being 5.3% and 5.1% respectively. In addition, the proposed training method can improve the classification performance considerably when used on the public CIFAR-10 dataset.


2018 ◽  
Vol 10 (10) ◽  
pp. 1649 ◽  
Author(s):  
Hao Li ◽  
Pedram Ghamisi ◽  
Uwe Soergel ◽  
Xiao Zhu

Recently, convolutional neural networks (CNN) have been intensively investigated for the classification of remote sensing data by extracting invariant and abstract features suitable for classification. In this paper, a novel framework is proposed for the fusion of hyperspectral images and LiDAR-derived elevation data based on CNN and composite kernels. First, extinction profiles are applied to both data sources in order to extract spatial and elevation features from hyperspectral and LiDAR-derived data, respectively. Second, a three-stream CNN is designed to extract informative spectral, spatial, and elevation features individually from both available sources. The combination of extinction profiles and CNN features enables us to jointly benefit from low-level and high-level features to improve classification performance. To fuse the heterogeneous spectral, spatial, and elevation features extracted by CNN, instead of a simple stacking strategy, a multi-sensor composite kernels (MCK) scheme is designed. This scheme helps us to achieve higher spectral, spatial, and elevation separability of the extracted features and effectively perform multi-sensor data fusion in kernel space. In this context, a support vector machine and extreme learning machine with their composite kernels version are employed to produce the final classification result. The proposed framework is carried out on two widely used data sets with different characteristics: an urban data set captured over Houston, USA, and a rural data set captured over Trento, Italy. The proposed framework yields the highest OA of 92 . 57 % and 97 . 91 % for Houston and Trento data sets. Experimental results confirm that the proposed fusion framework can produce competitive results in both urban and rural areas in terms of classification accuracy, and significantly mitigate the salt and pepper noise in classification maps.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 764
Author(s):  
Zhiwen Huang ◽  
Quan Zhou ◽  
Xingxing Zhu ◽  
Xuming Zhang

In many medical image classification tasks, there is insufficient image data for deep convolutional neural networks (CNNs) to overcome the over-fitting problem. The light-weighted CNNs are easy to train but they usually have relatively poor classification performance. To improve the classification ability of light-weighted CNN models, we have proposed a novel batch similarity-based triplet loss to guide the CNNs to learn the weights. The proposed loss utilizes the similarity among multiple samples in the input batches to evaluate the distribution of training data. Reducing the proposed loss can increase the similarity among images of the same category and reduce the similarity among images of different categories. Besides this, it can be easily assembled into regular CNNs. To appreciate the performance of the proposed loss, some experiments have been done on chest X-ray images and skin rash images to compare it with several losses based on such popular light-weighted CNN models as EfficientNet, MobileNet, ShuffleNet and PeleeNet. The results demonstrate the applicability and effectiveness of our method in terms of classification accuracy, sensitivity and specificity.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1263
Author(s):  
Zhaojun Wang ◽  
Jiangning Wang ◽  
Congtian Lin ◽  
Yan Han ◽  
Zhaosheng Wang ◽  
...  

With the rapid development of digital technology, bird images have become an important part of ornithology research data. However, due to the rapid growth of bird image data, it has become a major challenge to effectively process such a large amount of data. In recent years, deep convolutional neural networks (DCNNs) have shown great potential and effectiveness in a variety of tasks regarding the automatic processing of bird images. However, no research has been conducted on the recognition of habitat elements in bird images, which is of great help when extracting habitat information from bird images. Here, we demonstrate the recognition of habitat elements using four DCNN models trained end-to-end directly based on images. To carry out this research, an image database called Habitat Elements of Bird Images (HEOBs-10) and composed of 10 categories of habitat elements was built, making future benchmarks and evaluations possible. Experiments showed that good results can be obtained by all the tested models. ResNet-152-based models yielded the best test accuracy rate (95.52%); the AlexNet-based model yielded the lowest test accuracy rate (89.48%). We conclude that DCNNs could be efficient and useful for automatically identifying habitat elements from bird images, and we believe that the practical application of this technology will be helpful for studying the relationships between birds and habitat elements.


2020 ◽  
Vol 10 (14) ◽  
pp. 4916
Author(s):  
Syna Sreng ◽  
Noppadol Maneerat ◽  
Kazuhiko Hamamoto ◽  
Khin Yadanar Win

Glaucoma is a major global cause of blindness. As the symptoms of glaucoma appear, when the disease reaches an advanced stage, proper screening of glaucoma in the early stages is challenging. Therefore, regular glaucoma screening is essential and recommended. However, eye screening is currently subjective, time-consuming and labor-intensive and there are insufficient eye specialists available. We present an automatic two-stage glaucoma screening system to reduce the workload of ophthalmologists. The system first segmented the optic disc region using a DeepLabv3+ architecture but substituted the encoder module with multiple deep convolutional neural networks. For the classification stage, we used pretrained deep convolutional neural networks for three proposals (1) transfer learning and (2) learning the feature descriptors using support vector machine and (3) building ensemble of methods in (1) and (2). We evaluated our methods on five available datasets containing 2787 retinal images and found that the best option for optic disc segmentation is a combination of DeepLabv3+ and MobileNet. For glaucoma classification, an ensemble of methods performed better than the conventional methods for RIM-ONE, ORIGA, DRISHTI-GS1 and ACRIMA datasets with the accuracy of 97.37%, 90.00%, 86.84% and 99.53% and Area Under Curve (AUC) of 100%, 92.06%, 91.67% and 99.98%, respectively, and performed comparably with CUHKMED, the top team in REFUGE challenge, using REFUGE dataset with an accuracy of 95.59% and AUC of 95.10%.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Miao Wu ◽  
Chuanbo Yan ◽  
Huiqiang Liu ◽  
Qian Liu

Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images.


2020 ◽  
Author(s):  
Muhammad Awais ◽  
Xi Long ◽  
Bin Yin ◽  
Chen chen ◽  
Saeed Akbarzadeh ◽  
...  

Abstract Objective: In this paper, we propose to evaluate the use of a pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNNs as feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally very expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results: From around 2-h Fluke® video recording of seven neonate, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future a dedicated neural network trained on neonatal data or a transfer learning approach is required.


Sign in / Sign up

Export Citation Format

Share Document