scholarly journals Application ofAntrodia camphorataPromotes Rat’s Wound HealingIn Vivoand Facilitates Fibroblast Cell ProliferationIn Vitro

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zahra A. Amin ◽  
Hapipah M. Ali ◽  
Mohammed A. Alshawsh ◽  
Pouya H. Darvish ◽  
Mahmood A. Abdulla

Antrodia camphoratais a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential ofAntrodia camphorataethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety ofAntrodia camphoratawas determinedin vivoby the acute toxicity test andin vitroby fibroblast cell proliferation assay. The scratch assay was used to evaluate thein vitrowound healing in fibroblast cells and the excision model of wound healing was testedin vivousing four groups of adultSprague Dawleyrats. Our results showed that wound treated withAntrodia camphorataextract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed withAntrodia camphorataextract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson’s trichrom stain showed granulation tissue containing more collagen and less inflammatory cell inAntrodia camphoratatreated wounds. In conclusion,Antrodia camphorataextract significantly enhanced the rate of the wound enclosure in rats and promotes thein vitrohealing through fibroblast cell proliferation.

2018 ◽  
Vol 24 (13) ◽  
pp. 1395-1404
Author(s):  
Elham Bagheri ◽  
Kamelia Saremi ◽  
Fatemeh Hajiaghaalipour ◽  
Fadhil Lafta Faraj ◽  
Hapipah Mohd Ali ◽  
...  

Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson’s Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2009 ◽  
Vol 2009 ◽  
pp. 19-19
Author(s):  
E Watts ◽  
M T Rose

Wound healing in horses is particularly problematic compared to other species and limb wounds often exhibit complications such as exuberant granulation tissue, poor wound contraction and unsightly scars. In comparison, oral wounds heal without scar formation. Therefore, in vitro experiments were conducted to investigate the differences between equine oral and limb fibroblasts in terms of proliferation and their ability to contract a collagen matrix, a commonly used in vitro model of wound contraction.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2488
Author(s):  
Judith Salas-Oropeza ◽  
Manuel Jimenez-Estrada ◽  
Armando Perez-Torres ◽  
Andres Eliu Castell-Rodriguez ◽  
Rodolfo Becerril-Millan ◽  
...  

Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) and α-phellandrene (FEL) are terpenes that have been found in this EO, and it has been shown in different studies that both have anti-inflammatory activity. The aim of this study was to determine the wound healing activity of these two terpenes. The results of in vitro tests demonstrate that PIN and FEL are not cytotoxic at low concentrations and that they do not stimulate fibroblast cell proliferation. In vivo tests showed that the terpenes produce stress-resistant scars and accelerate wound contraction, due to collagen deposition from the early stages, in wounds treated with both terpenes. Therefore, we conclude that both α-pinene and α-phellandrene promote the healing process; this confirms the healing activity of the EO of B. morelensis, since having these terpenes as part of its chemical composition explains part of its demonstrated activity.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 222
Author(s):  
Suneel Kumar ◽  
Yuying Tan ◽  
Francois Berthiaume

Pressure ulcers (PUs) or sores are a secondary complication of diabetic neuropathy and traumatic spinal cord injury (SCI). PUs tend to occur in soft tissues located around bony prominences and may heal slowly or not at all. A common mechanism underlying impaired healing of PUs may be dysfunction of the local neurovascular system including deficiency of essential neuropeptides, such as substance P (SP). Previous studies indicate that disturbance in cutaneous sensory innervation leads to a defect in all stages of wound healing, as is the case after SCI. It is hypothesized that nerve fibers enhance wound healing by promoting initial inflammation via the releasing of neuropeptides such as SP. Therefore, we investigated whether exogenous SP improves skin wound healing using in vitro and in vivo models. For in vitro studies, the effects of SP on keratinocyte proliferation and wound closure after a scratch injury were studied under normoxia (pO2 ~21%) or hypoxia (pO2 ~1%) and in presence of normal serum (10% v/v) or low serum (1% v/v) concentrations. Hypoxia and low serum both significantly slowed cell proliferation and wound closure. Under combined low serum and hypoxia, used to mimic the nutrient- and oxygen-poor environment of chronic wounds, SP (10−7 M) significantly enhanced cell proliferation and wound closure rate. For in vivo studies, two full-thickness excisional wounds were created with a 5 mm biopsy punch on the dorsum on either side of the midline of 15-week-old C57BL/6J male and female mice. Immediately, wounds were treated topically with one dose of 0.5 μg SP or PBS vehicle. The data suggest a beneficial role in wound closure and reepithelization, and thus enhanced wound healing, in male and female mice. Taken together, exogenously applied neuropeptide SP enhanced wound healing via cell proliferation and migration in vitro and in vivo. Thus, exogenous SP may be a useful strategy to explore further for treating PUs in SCI and diabetic patients.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1303
Author(s):  
Edgar D. Moyers-Montoya ◽  
René Gerardo Escobedo-González ◽  
Claudia L. Vargas-Requena ◽  
Perla Elvia Garcia-Casillas ◽  
Carlos A. Martínez-Pérez

Polycaprolactone (PCL) is a well-known FDA approved biomaterial for tissue engineering. However, its hydrophobic properties limit its use for skin wound healing which makes its functionalization necessary. In this work, we present the fabrication and evaluation of PCL nanofibers by the electrospinning technique, as well as PCL functionalized with 6-deoxy-6-amino-β-cyclodextrin (aminated nanofibers). Afterwards, epithelial growth factor (EGF) was anchored onto hydrophilic PCL/deoxy-6-amino-β-cyclodextrin. The characterization of the three electrospun fibers was made by means of field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR); Confocal-Raman Spectroscopy were used for elucidated the chemical structure, the hydrophilicity was determined by Contact Angle (CA). In vitro cell proliferation test was made by seeding embryonic fibroblast cell line (3T3) onto the electrospun mats and in vivo studies in a murine model were conducted to prove its effectivity as skin wound healing material. The in vitro studies showed that aminated nanofibers without and with EGF had 100 and 150% more cell proliferation of 3T3 cells against the PCL alone, respectively. In vivo results showed that skin wound healing in a murine model was accelerated by the incorporation of the EGF. In addition, the EGF had favorable effects in epidermal cell proliferation. The study demonstrates that a protein of high biological interest like EGF can be attached covalently to the surface of a synthetic material enriched with amino groups. This kind of biomaterial has a great potential for applications in skin regeneration and wound healing.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhou Xu ◽  
Bin Deng ◽  
Xuewen Wang ◽  
Jie Yu ◽  
Zhuobin Xu ◽  
...  

Abstract Background Diabetic wound healing remains a challenge because of its susceptibility to drug-resistant bacterial infection and its persistent proinflammatory state. Switching from proinflammatory M1 macrophages (Mφs) to proregenerative M2 dominant Mφs in a timely manner accelerates wound healing by coordinating inflammatory, proliferative, and angiogenic processes. Methods We propose a sequential photothermal antibacterial and subsequent M2 Mφ polarization strategy based on nanofibers (NFs) consisting of polydopamine (PDA) coating on curcumin (Cur) nanocrystals to treat Methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds. Results The PDA/Cur NFs showed excellent photothermal conversion and antibacterial effects due to the PDA shell under laser irradiation, consequently resulting in the release of the inner Cur with the ability to promote cell proliferation and reinforce the M2 Mφ phenotype in vitro. In vivo studies on MRSA-infected diabetic wounds showed that PDA/Cur NFs not only inhibited MRSA infection but also accelerated the wound regeneration process. Furthermore, the NFs displayed the ability to promote the M2 Mφ phenotype with enhanced collagen deposition, angiogenesis, and cell proliferation. Conclusion Overall, the NFs displayed great potential as promising therapeutics for healing infected diabetic wounds through a sequential photothermal antibacterial and M2 Mφ polarization strategy. Graphical abstract


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2821
Author(s):  
Norul Ashikin Norzain ◽  
Zhi-Wei Yu ◽  
Wei-Chih Lin ◽  
Hsing-Hao Su

This paper describes the fabrication of a structural scaffold consisting of both randomly oriented nanofibers and triangular prism patterns on the scaffold surface using a combination technique of electrospinning and collector templates. The polycaprolactone (PCL) nanofibers were electrospun over a triangular prism pattern mold, which acted as a template. The deposited scaffold was removed from the template to produce a standalone structural scaffold of three-dimensional micropatterned nanofibers. The fabricated structural scaffold was compared with flat randomly oriented nanofibers based on in vitro and in vivo studies. The in vitro study indicated that the structural scaffold demonstrated higher fibroblast cell proliferation, cell elongation with a 13.48 ± 2.73 aspect ratio and 70% fibroblast cell orientation compared with flat random nanofibers. Among the treatment groups, the structural scaffold escalated the wound closure to 92.17% on day 14. Histological staining of the healed wound area demonstrated that the structural scaffold exhibited advanced epithelization of the epidermal layer accompanied by mild inflammation. The proliferated fibroblast cells and collagen fibers in the structural scaffold appeared denser and arranged more horizontally. These results determined the potential of micropatterned scaffolds for stimulating cell behavior and their application for wound healing.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2737
Author(s):  
Sariya Mapoung ◽  
Shugo Suzuki ◽  
Satoshi Fuji ◽  
Aya Naiki-Ito ◽  
Hiroyuki Kato ◽  
...  

Curcumin (Cur) exhibits biological activities that support its candidacy for cancer treatment. However, there are limitations to its pharmacological effects, such as poor solubility and bioavailability. Notably, the use of Cur analogs has potential for addressing these limitations. Dehydrozingerone (DZG) is a representative of the half-chemical structure of Cur, and many reports have indicated that it is anticancer in vitro. We, therefore, have hypothesized that DZG could inhibit prostate cancer progression both in vitro and in vivo. Results revealed that DZG decreased cell proliferation of rat castration-resistant prostate cancer, PLS10 cells, via induction of the cell cycle arrest in the G1 phase in vitro. In the PLS10 xenograft model, DZG significantly decreased the growth of subcutaneous tumors when compared to the control via the inhibition of cell proliferation and angiogenesis. To prove that DZG could improve the limitations of Cur, an in vivo pharmacokinetic was determined. DZG was detected in the serum at higher concentrations and remained up to 3 h after intraperitoneal injections, which was longer than Cur. DZG also showed superior in vivo tissue distribution than Cur. The results suggest that DZG could be a candidate of the Cur analog that can potentially exert anticancer capabilities in vivo and thereby improve its bioavailability.


2013 ◽  
Vol 112 (4) ◽  
pp. 1749-1753 ◽  
Author(s):  
José Reck ◽  
Fernanda S. Marks ◽  
Carlos Termignoni ◽  
Jorge A. Guimarães ◽  
João Ricardo Martins

Sign in / Sign up

Export Citation Format

Share Document