Synthesis of Novel Derivatives of Quinazoline Schiff base Compound Promotes Epithelial Wound Healing

2018 ◽  
Vol 24 (13) ◽  
pp. 1395-1404
Author(s):  
Elham Bagheri ◽  
Kamelia Saremi ◽  
Fatemeh Hajiaghaalipour ◽  
Fadhil Lafta Faraj ◽  
Hapipah Mohd Ali ◽  
...  

Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson’s Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Zahra A. Amin ◽  
Hapipah M. Ali ◽  
Mohammed A. Alshawsh ◽  
Pouya H. Darvish ◽  
Mahmood A. Abdulla

Antrodia camphoratais a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential ofAntrodia camphorataethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety ofAntrodia camphoratawas determinedin vivoby the acute toxicity test andin vitroby fibroblast cell proliferation assay. The scratch assay was used to evaluate thein vitrowound healing in fibroblast cells and the excision model of wound healing was testedin vivousing four groups of adultSprague Dawleyrats. Our results showed that wound treated withAntrodia camphorataextract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed withAntrodia camphorataextract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson’s trichrom stain showed granulation tissue containing more collagen and less inflammatory cell inAntrodia camphoratatreated wounds. In conclusion,Antrodia camphorataextract significantly enhanced the rate of the wound enclosure in rats and promotes thein vitrohealing through fibroblast cell proliferation.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


2018 ◽  
Vol 51 (2) ◽  
pp. 647-663 ◽  
Author(s):  
Bobin Mi ◽  
Jing Liu ◽  
Yi Liu ◽  
Liangcong Hu ◽  
Yukun Liu ◽  
...  

Background/Aims: Antimicrobial peptides are effective promoters of wound healing but are susceptible to degradation. In this study, we replaced the GIGDP unit on the N-terminal of the endogenous human antimicrobial peptide hBD-2 with APKAM to produce A-hBD-2 and analyzed the effect on wound healing both in vitro and in vivo. Methods: The effects of A-hBD-2 and hBD-2 on cytotoxicity and proliferation in keratinocytes were assessed by Cell Counting Kit-8 assay. The structural stability and antimicrobial activity of hBD-2 and A-hBD-2 were evaluated against Staphylococcus aureus. RNA and proteins levels were evaluated by real-time PCR and western blotting, respectively. Cell migration was evaluated using a transwell assay. Cell cycle analysis was performed by flow cytometry. Wound healing was assessed in Sprague-Dawley rats. Epidermal thickness was evaluated by hematoxylin and eosin staining. Results: We found that hBD-2 exhibited cytotoxicity at high concentrations and decreased the structural stability in the presence of high sodium chloride concentrations. A-hBD-2 exhibited increased structural stability and antimicrobial activity, and had lower cytotoxicity in keratinocytes. A-hBD-2 increased the migration and proliferation of keratinocytes via phosphorylation of EGFR and STAT3 and suppressed terminal differentiation of keratinocytes. We also found that A-hBD-2 elicited mobilization of intracellular Ca2+ and stimulated keratinocytes to produce pro- and anti-inflammatory cytokines and chemokines via phospholipase C activation. Furthermore, A-hBD-2 promoted wound healing in vivo. Conclusion: Our data suggest that A-hBD-2 may be a promising candidate therapy for wound healing.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3827-3827
Author(s):  
Francesca Ferraro ◽  
Christopher A Miller ◽  
Amy Abdalla ◽  
Nichole Helton ◽  
Nathan Salomonis ◽  
...  

Currently, it is not clear why some patients with acute myeloid leukemia (AML) can be "cured" with chemotherapy alone; are they living with small amounts of disease that is held in check by immunologic (or other) mechanisms, or is their disease really eradicated? The percentage of cytogenetically normal AML patients who have long (>5 years) first remissions (LFRs) after chemotherapy alone is low (about 9.1% in patients <60 years and 1.6% in >60 years1). For this reason, most intermediate risk patients are offered allogeneic transplantation to decrease their risk for relapse. To better understand mechanisms of chemotherapy sensitivity in AML, we performed an analysis of the mutation landscape and persistence, using samples from 8 normal karyotype LFR patients (without CEBPA mutations) who received standard "7+3" induction and high dose cytarabine consolidation as their only therapy. The mean age at diagnosis was 43.5 years, and the mean follow up in first remission is 7.6 years; none of these patients has relapsed to date. For each case, we performed enhanced exome sequencing at diagnosis (235x coverage of the entire exome, and ~1008x coverage of recurrently mutated AML genes). Each case had at least one documented AML driver mutation, with a median of 29 somatic mutations in the exome space. We created probes for 225 mutations (mean 28 per case), and performed error-corrected sequencing (Haloplex) for all available remission samples. The mean depth of Haloplex coverage was 1607x, and each sample had at least one AML-specific mutation assayed, with a sensitivity of 1 cell in 1,750 (0.06%). 7/8 patients demonstrated complete clearance of all mutations in all remission samples tested, which was confirmed with digital droplet PCR for 5 cases, with a sensitivity of detection of 1 cell in 100,000. In one case, we detected a persistent ancestral clone harboring DNMT3AR882H, which can be associated with long first remissions for some patients2. Strikingly, the founding clone in all 8 cases had one or more somatic mutations in genes known to drive cell proliferation (e.g. MYC, FLT3, NRAS, PTPN11, Figure 1 top panel). These are usually subclonal mutations that occur late during leukemic progression, suggesting that the presence of a "proliferative hit" in the founding clone might be important for chemotherapy clearance of all the AML cells in a given patient. To support this hypothesis, we analyzed the mutational clearance of 82 AML cases with paired diagnosis and day 30 post-chemotherapy bone marrow samples. We observed that, whether present in the founding clone or in subclones, mutations in MYC, CEBPA, FLT3, NRAS, and PTPN11 cleared after induction chemotherapy in all samples, while other mutations were often persistent at day 30 (e.g. DNMT3A, IDH1, IDH2, NPM1, TET2; Figure 1 bottom panel). Compared to other published sequencing studies of AML, MYC and NRAS mutations were significantly enriched in this small cohort (MYC p= 0.002, and NRAS p= 0.034), with MYC enrichment being particularly striking (37.5% versus 1.8%). All MYC mutations were canonical single base substitutions occurring in the highly conserved MYC Box 2 domain at the N-terminus of MYC (p.P74Q or p.T73N). Overexpression of MYCP74Q in murine hematopoietic progenitors prolonged MYC half life (89 min vs. 44 min for wild type), and enhanced cytarabine sensitivity at all concentrations tested (range 10-1000 nM, p=0.0003), both in vitro and in a MYC-driven leukemia model in vivo. MYC expression measured with flow cytometry in the blasts of the LFR samples was significantly higher (p=0.045) compared to unfavorable risk (complex karyotype) or other intermediate risk categories, but similar to good risk AML (biallelic CEBPA mutations, core binding factor fusion-associated AML, and AML with isolated NPMc), suggesting that activation of the MYC pathway may represent a shared feature of chemosensitive patients. Taken together, these data suggest that some intermediate patients who are effectively "cured" with chemotherapy alone may not have persistent subclinical disease, nor retained ancestral clones that could potentially contribute to relapse. Importantly, these patients often have mutations driving cell proliferation in the founding clone, indicating that the presence of specific mutations in all malignant cells may be critical for complete AML cell clearance with chemotherapy. 1. Blood Adv. 2018 Jul 10; 2(13): 1645-1650 2. N Engl J Med 2018; 378:1189-1199 Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhixing Jin ◽  
Li Wang ◽  
Zhiling Zhu

Objective. To evaluate the effect of GuiXiong Xiaoyi Wan (GXXYW) on the development of endometriosis in a rat model.Methods. Sprague-Dawley rats with surgically induced endometriosis were randomly treated with low-dose GXXYW, high-dose GXXYW, or vehicle (negative control) for 28 days. Immunohistochemistry was used to assess cell proliferation in the lesions. The terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP biotin nick end labelling (TUNEL) method was performed to analyse the apoptosis induced by GuiXiong Xiaoyi Wan. The percentages of CD3+ lymphocytes, CD4+ lymphocytes, and CD8+ lymphocytes in the spleens of the rats were evaluated using flow cytometric analysis.Results. Treatment with GXXYW significantly decreased the lesion size, inhibited cell proliferation, and induced apoptosis in endometriotic tissue. The spleens of GXXYW-treated rats also demonstrated a significant increase in the percentage of CD4+ lymphocytes and a significant decrease in the percentage of CD8+ lymphocytes.Conclusions. These results suggest that, in a rat model, GXXYW may be effective in the suppression of the growth of endometriosis, possibly through the inhibition of cell proliferation, the induction of apoptosis of endometriotic cells, and the regulation of the immune system.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3471
Author(s):  
Fatima Saqib ◽  
Muhammad Arif Aslam ◽  
Khizra Mujahid ◽  
Luigi Marceanu ◽  
Marius Moga ◽  
...  

Anogeissus acuminata (Roxb. ex DC.) is a folkloric medicinal plant in Asia; including Pakistan; used as a traditional remedy for cardiovascular disorders. This study was planned to establish a pharmacological basis for the trivial uses of Anogeissus acuminata in certain medical conditions related to cardiovascular systems and to explore the underlying mechanisms. Mechanistic studies suggested that crude extract of Anogeissus acuminata (Aa.Cr) produced in vitro cardio-relaxant and vasorelaxant effects in isolated paired atria and aorta coupled with in vivo decrease in blood pressure by invasive method; using pressure and force transducers connected to Power Lab Data Acquisition System. Moreover; Aa.Cr showed positive effects in left ventricular hypertrophy in Sprague Dawley rats observed hemodynamically by a decrease in cardiac cell size and fibrosis; along with absence of inflammatory cells; coupled with reduced levels of angiotensin converting enzyme (ACE) and renin concentration along with increased concentrations of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP). In Acute Myocardial Infarction (AMI) model; creatine kinase (CK), creatine kinase-MB (CK-MB) and lactic acid dehydrogenase (LDH levels) were found to be decreased; along with decreased necrosis; edema and recruitment of inflammatory cells histologically. In vivo and ex vivo studies of Anogeissus acuminata provided evidence of vasorelaxant; hypotensive and cardioprotective properties facilitated through blockage of voltage-gated Ca++ ion channel; validating its use in cardiovascular diseases


2018 ◽  
Vol 39 (4) ◽  
pp. 1547
Author(s):  
Mariana Teixeira Tillmann ◽  
Cláudia Beatriz De Mello Mendes ◽  
Geferson Fischer ◽  
Antonio Sergio Varela Júnior ◽  
Cristina Gevehr Fernandes ◽  
...  

Phytoterapic compounds have been used in wound healing for many centuries. Nowadays, scientific evidences of phytotherapeutics is a requirement of the legislation. The scientific literature notes the need for healing topics yielding scars that are both aesthetically appealing and resistant. We aimed to evaluate the cytotoxicity of several doses of T. aestivum extract (2 mg mL-1, 4 mg mL-1, 6 mg mL-1, 8 mg mL-1 and 10 mg mL-1) in a fibroblast cell line and the healing process in an in vivo experimental model (New Zealand rabbits). For this, MTT test in 3T6 cells was performed in duplicates using MEM (0 mg ml-1) as negative control. Cell viability was calculated as: absorbance average in treatments/absorbance average in controls x 100. In vivo test was performed in 78 skin wounds in rabbits that were treated with 2 mg ml-1and 10 mg ml-1 of T. aestivum and non-ionic cream for 21 days. After this period, it was evaluated the histology using picrosorius and Gomori’s trichrome staining. Statistical analysis was evaluated using T test (Graphpad) for cytotoxicity assay, Fischer test for the gomori trichrome test (Grahpad) and Kruskal-Wallis (Statistic 9.0) for picrosirius test. The in vitro test resulted in cytotoxicity observed at 2mg mL-1 whereas cells were viable at higher doses. On the other hand, it was observed that collagen formation of wounds was more uniform with this dose than with 10mg mL-1 extract in the in vivo study. Thus, we conclude that the 2mg mL-1 T. aestivum aqueous extract dose was more efficient in the in vivo wound healing study, despite its cytotoxic effects in vitro.


2008 ◽  
Vol 62 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Rade Injac ◽  
Aleksandar Djordjevic ◽  
Borut Strukelj

The therapeutic utility of the anthracycline antibiotic doxorubicin is limited due to its cardiotoxicity. Our aim was to investigate the efficacy of fullerenol C60(OH)24 in preventing single, high-dose doxorubicin-induced cardiotoxicity in rats with malignant neoplasm. In vitro and in vivo studies have shown that fullerenol C60(OH)24, has strong antioxidative potential. Experiment was performed on adult female Sprague Dawley rats with chemically induced mammary carcinomas. All 32 rats (2-5 groups) received i.p. applications of 1-methyl-l-nitrosourea (MNU; 50 mg/kg body weight) on the 50th and 113th day of age. Animals were randomly divided into five groups as follows: (1) Untreated control group - rats received saline only; (2) Cancer control group - rats received MNU and saline; (3) Dox group - rats received MNU and Dox 8 mg/kg; (4) Full/Dox group -rats received MNU and Full 100 mg/kg 30 min before Dox 8 mg/kg; (5) Full group - rats received MNU and Full 100 mg/kg. Tumor incidence was 4.94 +- 0.576 per rat. The animals were sacrificed 2 days after the application of doxorubicin and/or fullerenol, and the serum activities of CK, LDH and ?-HBDH, as well as the levels of MDA, GSH, GSSG, GSH-Px, SOD, CAT, GR and TAS in the heart, were determined. The results obtained from the enzymatic activity in the serum show that the administration of a single dose of 8 mg/kg in all treated groups induces statistically significant damage. There are significant changes in the enzymes of LDH and CK (p < 0.05), after an i.p. administration of doxorubicin/fullerenol and fullerenol. Comparing all groups with untreated control group, point to the conclusion that in the case of a lower oc-HBDH/LDH ratio, results in more serious the liver parenchymal damage. The results revealed that doxorubicin induced oxidative damage and that the fullerenol antioxidative influence caused significant changes in MDA, GSH, GSSG, GSH-Px, SOD, CAT, GR and TAS level in the heart (p < 0.05). Ultra structural analysis of heart tissues from rats treated with doxorubicin and indicated that the hearts of the rats were protected from doxorubicin-induced subcellular damage. Doxorubicin/fullerenol rats did not appear to show significant cardiac damage although occasional focal loss of cristae in the mitochondria was observed. Therefore, it is suggested that fullerenol might be a potential cardioprotector in doxorubicin-treated individuals.


Sign in / Sign up

Export Citation Format

Share Document