scholarly journals Ray Tracing Study of Optical Characteristics of the Solar Image in the Receiver for a Thermal Solar Parabolic Dish Collector

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Saša R. Pavlovic ◽  
Velimir P. Stefanovic

This study presents the geometric aspects of the focal image for a solar parabolic concentrator (SPC) using the ray tracing technique to establish parameters that allow the designation of the most suitable geometry for coupling the SPC to absorber-receiver. The efficient conversion of solar radiation into heat at these temperature levels requires a use of concentrating solar collectors. In this paper detailed optical design of the solar parabolic dish concentrator is presented. The system has diameter D=3800 mm and focal distance f=2260 mm. The parabolic dish of the solar system consists of 11 curvilinear trapezoidal reflective petals. For the construction of the solar collectors, mild steel-sheet and square pipe were used as the shell support for the reflecting surfaces. This paper presents optical simulations of the parabolic solar concentrator unit using the ray tracing software TracePro. The total flux on the receiver and the distribution of irradiance for absorbing flux on center and periphery receiver are given. The goal of this paper is to present the optical design of a low-tech solar concentrator that can be used as a potentially low cost tool for laboratory scale research on the medium-temperature thermal processes, cooling, industrial processes, polygeneration systems, and so forth.

2014 ◽  
Vol 18 (3) ◽  
pp. 989-998 ◽  
Author(s):  
Sasa Pavlovic ◽  
Velimir Stefanovic ◽  
Suad Suljkovic

Solar energy may be practically utilized directly through transformation into heat, electrical or chemical energy. We present a procedure to design a square facet concentrator for laboratory-scale research on medium-temperature thermal processes. The efficient conversion of solar radiation into heat at these temperature levels requires the use of concentrating solar collectors. Large concentrating dishes generally have a reflecting surface made up of a number of individual mirror panels (facets). Optical ray tracing is used to generate a system performance model. A square facet parabolic solar concentrator with realistic specularly surface and facet positioning accuracy will deliver up to 13.604 kW of radiative power over a 250 mm radius disk (receiver diameter) located in the focal plane on the focal length of 1500mmwith average concentrating ratio exceeding 1200. The Monte Carlo ray tracing method is used for analysis of the optical performance of the concentrator and to identify the set of geometric concentrator parameters that allow for flux characteristics suitable for medium and high-temperature applications.


MRS Advances ◽  
2020 ◽  
Vol 5 (50) ◽  
pp. 2545-2553
Author(s):  
Nidia Aracely Cisneros-Cárdenas ◽  
Rafael Enrique Cabanillas-López ◽  
Ramiro Alberto Calleja-Valdez ◽  
Ricardo Arturo Pérez-Enciso ◽  
Carlos Alberto Pérez-Rábago ◽  
...  

ABSTRACTThe need to achieve a uniform distribution of concentrated solar flux in the photovoltaic, thermal or any other receivers is a common problem; therefore, the optical characterization of the concentration system is necessary to determinate the physical characteristics of the receptors. In this work, a parabolic dish concentrator of 1.65x1.65 m2, developed by research from the University of Arizona, is optically characterized under normal operating conditions, also known as environmental conditions that refer to non-controlled conditions as solar radiation, environmental temperature and wind velocity that could affect slightly, by thermal and mechanical efforts, the distribution profiles of the concentrated solar radiation. The set used for the evaluation consisted of the parabolic mirror and Chilled Lambertian Flat Surface installed in the focal point on the optical axis of the mirror. The evaluation was divided into two parts: a theoretical part that consist on using ray tracing simulation and an experimental part that corresponds to image analysis. The used methodology in this work has been stablish in many researches, so this is a reliable method. The global optical error was 2.3 mrad under normal operating conditions.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1237-1249 ◽  
Author(s):  
Sasa Pavlovic ◽  
Darko Vasiljevic ◽  
Velimir Stefanovic ◽  
Zoran Stamenkovic ◽  
Evangelos Bellos

In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers.


2015 ◽  
Vol 787 ◽  
pp. 197-201 ◽  
Author(s):  
V. Thirunavukkarasu ◽  
M. Cheralathan

Concentrated solar collectors have high efficiency as compared to flat plate and evacuated tube solar collectors. Cavity receivers are mainly used on the parabolic dish concentrators and tower type concentrator systems. The heat transfer surfaces of cavity receiver are composed by coiled metal tube. Heat transfer fluid flows in the internal spaces of coiled metal tube, and the external surfaces would absorb the highly concentrated solar energy. This paper explains the thermal performance of parabolic dish concentrator system with hetero-conical cavity receiver. The experimental analysis was done during the month of April 2014 on clear sunny days at Chennai [Latitude: 13.08oN, Longitude: 80.27oE] to study its thermal performance.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
J. S. P. Mlatho

A parabolic dish concentrator (PDC) has been designed to be used for charging a thermal energy storage (TES) that is for indirect cooking purpose. Three different receivers have been designed, fabricated, and their performance tested experimentally. The three designs are Volumetric Flask (VF), Volumetric Box (VB), and Conical Tube (CT) receivers. The receivers have been fabricated to use oil as a heat transfer fluid. Of the three designs, the CT receiver has the highest efficiency for a given flow rate, thus making it the best receiver. A positive displacement pump was also designed and constructed for the experimental tests. The pump is used to drive the oil through the receivers and also to act as a flow meter. Thus a low-cost and high-temperature positive displacement pump and a flow meter have been designed and fabricated for use in solar thermal studies.


Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 68 ◽  
Author(s):  
Furkan Sahin ◽  
Musa Yılmaz

Multi-junction solar cells can be economically viable for terrestrial applications when operated under concentrated illuminations. The optimal design of concentrator optics in high concentration photovoltaics (HCPV) systems is crucial for achieving high energy conversion. At a high geometric concentration, chromatic aberration of the primary lens can restrict the optical efficiency and acceptance angle. In order to correct chromatic aberration, multi-material, multi-element refractive elements, hybrid refractive/diffractive elements, or multi-element refractive and diffractive systems can be designed. In this paper, the effect of introducing a diffractive surface in the optical path is analyzed. An example two-stage refractive and diffractive optical system is shown to have an optical efficiency of up to 0.87, and an acceptance angle of up to ±0.55° with a 1600× geometric concentration ratio, which is a significant improvement compared to a single-stage concentrator system with a single material. This optical design can be mass-produced with conventional fabrication methods, thus providing a low-cost alternative to other approaches, and the design approach can be generalized to many other solar concentrator systems with different cell sizes and geometric concentration ratios.


2021 ◽  
Vol 11 (8) ◽  
pp. 3704
Author(s):  
Javier E. Barrón-Díaz ◽  
Emmanuel A. Flores-Johnson ◽  
Danny G. Chan-Colli ◽  
J. Francisco Koh-Dzul ◽  
Ali Bassam ◽  
...  

Compound parabolic concentrator (CPC) solar collectors are widely used for solar energy systems in industry; however, CPC collectors for residential applications have not been fully investigated. In this work, the thermal performance of non-tracking, small-size and low-cost CPC collectors with an absorber with and without segmented fins was studied experimentally and by means of a proposed numerical methodology that included ray tracing simulation and a coupled heat transfer finite element method (FEM)-computational fluid dynamics (CFD) simulation, which was validated with experimental data. The experimental results showed that the CPC with a finned absorber has better thermal performance than that of the CPC with absorber without fins, which was attributed to the increase in thermal energy on the absorber surface. The numerical results showed that ray tracing simulation can be used to estimate the heat flux on the absorber surface and the FEM-CFD simulation can be used to estimate the heat transfer from the absorber to the water running through the pipe along with its temperature. The numerical results showed that mass flow rate is an important parameter for the design of the CPC collectors. The numerical methodology developed in this work was capable of describing the thermal performance of the CPC collectors and can be used for the modeling of the thermal behavior of other CPCs solar systems.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Ramon Pujol-Nadal ◽  
Víctor Martínez-Moll ◽  
Andreu Moià-Pol

The fixed mirror solar concentrator (FMSC) possesses a geometry that can produce thermal energy in medium temperature range. Due to its static reflector, the FMSC has several advantages when compared to other designs, such as being one of the best adapted for integration onto building roofs. An optical ray-tracing analysis of its geometry was presented in a previous paper (Pujol Nadal and Martínez Moll, 2012, “Optical Analysis of the Fixed Mirror Solar Concentrator by Forward Ray-Tracing Procedure,” Trans ASME J. Solar Energy Eng., 134(3), pp. 031009-1-14). The optical results were obtained in function of three design parameters: the number of mirrors N, the ratio of focal length and reflector width F/W, and the intercept factor γ (in order to represent different receiver widths). In this communication, the integrated thermal output of the same parameter combinations has been determined in order to find optimal values of the design parameters at a working temperature of 200 °C. The results were obtained for three different climates and two orientations (North-South and East-West). The results show that FMSC can produce heat at 200 °C with an annual thermal efficiency of 39, 44, and 48%, dependent of the location considered (Munich, Palma de Mallorca, and Cairo). The best FMSC geometries in function of the design parameters are exhibited for medium range applications.


Sign in / Sign up

Export Citation Format

Share Document