scholarly journals Role of Nutritional Factors at the Early Life Stages in the Pathogenesis and Clinical Course of Type 1 Diabetes

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yukiko Kagohashi ◽  
Hiroki Otani

Nutrition has been suggested as an important environmental factor other than viruses and chemicals in the pathogenesis of type 1 diabetes (T1D). Whereas various maternal dietary nutritional elements have been suggested and examined in T1D of both humans and experimental animals, the results largely remain controversial. In a series of studies using T1D model nonobese diabetic (NOD) mice, maternal dietary n-6/n-3 essential fatty acid ratio during pregnancy and lactation period, that is, early life stages of the offspring, has been shown to affect pathogenesis of insulitis and strongly prevent overt T1D of the offspring, which is consistent with its preventive effects on other allergic diseases.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xue-Song Zhang ◽  
Jackie Li ◽  
Kimberly A Krautkramer ◽  
Michelle Badri ◽  
Thomas Battaglia ◽  
...  

The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.


2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Lital Argaev Frenkel ◽  
Hava Rozenfeld ◽  
Konstantin Rozenberg ◽  
Sanford R Sampson ◽  
Tovit Rosenzweig

ABSTRACT Background Oxidative stress contributes to the pathologic process leading to the development, progression, and complications of type 1 diabetes (T1D). Objective The aim of this study was to investigate the effect of the antioxidant N-acetyl-l-cysteine (NAC), supplemented during early life or adulthood on the development of T1D. Methods NAC was administered to nonobese diabetic (NOD) female mice during pregnancy and lactation, and the development of diabetes was followed in offspring. In an additional set of experiments, offspring of untreated mice were given NAC during adulthood, and the development of T1D was followed. Morbidity rate, insulitis and serum cytokines were measured in the 2 sets of experiments. In addition, markers of oxidative stress, glutathione, lipid peroxidation, total antioxidant capacity and activity of antioxidant enzymes, were followed. Results Morbidity rate was reduced in both treatment protocols. A decrease in interferon γ, tumor necrosis factor α, interleukin 1α, and other type 1 diabetes-associated proinflammatory cytokines was found in mice supplemented with NAC in adulthood or during early life compared with control NOD mice. The severity of insulitis was higher in control NOD mice than in treated groups. NAC administration significantly reduced oxidative stress, as determined by reduced lipid peroxidation and increased total antioxidant capacity in serum and pancreas of mice treated in early life or in adulthood and increased pancreatic glutathione when administrated in adulthood. The activity of antioxidant enzymes was not affected in mice given NAC in adulthood, whereas an increase in the activity of superoxide dismutase and catalase was demonstrated in the pancreas of their offspring. Conclusion NAC decreased morbidity of NOD mice by attenuating the immune response, presumably by eliminating oxidative stress, and might be beneficial in reducing morbidity rates of T1D in high-risk individuals.


2018 ◽  
Vol 97 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Jane A Mullaney ◽  
Juliette E Stephens ◽  
Brooke E Geeling ◽  
Emma E Hamilton-Williams

Reproduction ◽  
2014 ◽  
Vol 148 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Hui Wang ◽  
Yansong Xue ◽  
Baolin Wang ◽  
Junxing Zhao ◽  
Xu Yan ◽  
...  

Accompanying the dramatic increase in maternal obesity, the incidence of type 1 diabetes (T1D) in children is also rapidly increasing. The objective of this study was to explore the effects of maternal obesity on the incidence of T1D in offspring using non-obese diabetic (NOD) mice, a common model for TID. Four-week-old female NOD mice were fed either a control diet (10% energy from fat, CON) or a high-fat diet (60% energy from fat) for 8 weeks before mating. Mice were maintained in their respective diets during pregnancy and lactation. All offspring mice were fed the CON to 16 weeks. Female offspring (16-week-old) born to obese dams showed more severe islet lymphocyte infiltration (major manifestation of insulitis) (P<0.01), concomitant with elevated nuclear factor kappa-light-chain-enhancer of activated B cells p65 signaling (P<0.01) and tumor necrosis factor alpha protein level (P<0.05) in the pancreas. In addition, maternal obesity resulted in impaired (P<0.05) glucose tolerance and lower (P<0.05) serum insulin levels in offspring. In conclusion, maternal obesity resulted in exacerbated insulitis and inflammation in the pancreas of NOD offspring mice, providing a possible explanation for the increased incidence of T1D in children.


2019 ◽  
Vol 617-618 ◽  
pp. 67-79 ◽  
Author(s):  
GF de Carvalho-Souza ◽  
E González-Ortegón ◽  
F Baldó ◽  
C Vilas ◽  
P Drake ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1190-P
Author(s):  
NOÉMIE CAILLOT ◽  
FABIEN COLAONE ◽  
ROMAIN BERTRAND ◽  
JENNIFER DA SILVA ◽  
SAMIR HAMDI ◽  
...  
Keyword(s):  
Nod Mice ◽  

Sign in / Sign up

Export Citation Format

Share Document