scholarly journals Anti-Inflammatory Effects of Cumin Essential Oil by Blocking JNK, ERK, and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Wei ◽  
Xitong Zhang ◽  
Yang Bi ◽  
Ruidong Miao ◽  
Zhong Zhang ◽  
...  

Cumin seeds (Cuminum cyminumL.) have been commonly used in food flavoring and perfumery. In this study, cumin essential oil (CuEO) extracted from seeds was employed to investigate the anti-inflammatory effects in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and the underlying mechanisms. A total of 26 volatile constituents were identified in CuEO by GC-MS, and the most abundant constituent was cuminaldehyde (48.773%). Mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction assay demonstrated that CuEO did not exhibit any cytotoxic effect at the employed concentrations (0.0005–0.01%). Real-time PCR tests showed that CuEO significantly inhibited the mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), interleukin- (IL-) 1, and IL-6. Moreover, western blotting analysis revealed that CuEO blocked LPS-induced transcriptional activation of nuclear factor-kappa B (NF-κB) and inhibited the phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). These results suggested that CuEO exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 cells via inhibition of NF-κB and mitogen-activated protein kinases ERK and JNK signaling; the chemical could be used as a source of anti-inflammatory agents as well as dietary complement for health promotion.

2010 ◽  
Vol 38 (05) ◽  
pp. 973-983 ◽  
Author(s):  
Hee-Sung Chae ◽  
Ok-Hwa Kang ◽  
Jang-Gi Choi ◽  
You-Chang Oh ◽  
Young-Seob Lee ◽  
...  

To determine the anti-inflammatory and analgesic activities of methyl gallate (MG) isolated from Galla Rhois, MG was studied in vivo for its analgesic activities using the writhing response in mice. Anti-inflammatory activity of MG was evaluated for NO and IL-6 production in RAW 264.7 cells. MG inhibited LPS-induced NO and IL-6 production. Consistent with these observations, the protein and mRNA expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited by MG. Moreover, MG suppressed the phosphorylation of ERK1/2 in LPS-induced RAW 264.7 cells in a dose-dependent manner. Taken together, the results of this study indicate that MG has anti-inflammatory effects.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kwang-Il Park ◽  
Sang-Rim Kang ◽  
Hyeon-Soo Park ◽  
Do Hoon Lee ◽  
Arulkumar Nagappan ◽  
...  

Lonicera japonica THUNB., which abundantly contains polyphenols, has been used as a traditional medicine for thousands of years in East Asian countries because of the anti-inflammation properties. This study aimed to investigate the anti-inflammatory mechanism of polyphenol components isolated from KoreaL. japonica T.by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) pathway. Polyphenols significantly decreased lipopolysaccharide- (LPS-) induced mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as mRNA expression of tumor necrosis factor-alpha, interleukin- (IL-) 1β, and IL-6. Moreover, polyphenols inhibited nuclear translocation of NF-κB p65, phosphorylation/degradation of the inhibitor ofκB, and phosphorylation of p38 MAPK, whereas the extracellular signal-regulated kinase and Janus N-terminal kinase were not affected. These results indicate that polyphenol components isolated from KoreaL. japonica T.should have anti-inflammatory effect on LPS-stimulated RAW 264.7 cells through the decrease of proinflammatory mediators expression by suppressing NF-κB and p38 MAPK activity.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Hwa-Jin Chung ◽  
Wonil Koh ◽  
Won Kyung Kim ◽  
Joon-Shik Shin ◽  
Jinho Lee ◽  
...  

Shinbaro3, a formulation derived from the hydrolysed roots of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, has been clinically used in the pharamacopuncture treatment of arthritis in Korea. In the present study, Shinbaro3 inhibited NO generation in LPS-induced RAW 264.7 cells in a dose-dependent manner. Shinbaro3 also downregulated the mRNA and protein expression of inflammatory mediators in a dose-dependent manner. Three mechanisms explaining the effects of Shinbaro3 in RAW 264.7 cells were identified as follows: (1) inhibition of the extracellular signal-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase (SAPK)/c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways; (2) suppression of IκB kinase-α/β (IKK-α/β) phosphorylation and nuclear factor-kappa B (NF-κB) subunits in the NF-κB pathway, which are involved in MyD88-dependent signalling; and (3) downregulation of IFN-β mRNA expression via inhibition of interferon regulatory factor 3 (IRF3) and Janus-activated kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) phosphorylation, which is involved in TRIF-dependent signalling. Shinbaro3 exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophage cells through modulation of the TLR4/MyD88 pathways, suggesting that Shinbaro3 is a novel anti-inflammatory therapeutic candidate in the field of pharmacopuncture.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hsueh-Ling Cheng ◽  
Nurkholis ◽  
Shi-Yie Cheng ◽  
Shen-Da Huang ◽  
Yan-Ting Lu ◽  
...  

Fatsia polycarpa, a plant endemic to Taiwan, is an herbal medicine known for treating several inflammation-related diseases, but its biological function needs scientific support. Thus, the anti-inflammatory effects and mechanisms of the methanolic crude extract (MCE) ofF. polycarpaand its feature constituents, that is, brassicasterol (a phytosterol), triterpenoids 3α-hydroxyolean-11,13(18)-dien-28-oic acid (HODA), 3α-hydroxyolean-11-en-28,13β-olide (HOEO), fatsicarpain D, and fatsicarpain F, were investigated. MCE and HOEO, but not brassicasterol, dose-dependently inhibited lipopolysaccharide- (LPS-)induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophage line, whereas HODA, fatsicarpain D and fatsicarpain F were toxic to RAW cells. Additionally, MCE and HOEO suppressed LPS-induced production of nitric oxide, prostaglandin E2, and interleukin-1βand interfered with LPS-promoted activation of the inhibitor kappa B kinase (IKK)/nuclear factor-κB (NF-κB) pathway, and that of the mitogen-activated protein kinases (MAPKs) extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In animal tests, MCE and HOEO effectively ameliorated 12-O-tetradecanoylphorobol-13 acetate- (TPA-)induced ear edema of mice. Thus, MCE ofF. polycarpaexhibited an obvious anti-inflammatory activityin vivoandin vitrothat likely involved the inhibition of the IKK/NF-κB pathway and the MAPKs, which may be attributed by triterpenoids such as HOEO.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 181 ◽  
Author(s):  
Bao Le ◽  
Pham Anh ◽  
Seung Yang

Mustard leaf kimchi contains numerous functional compounds that have various health benefits. However, the underlying mechanisms of their anti-inflammatory effects are unclear. In this study, changes in the mustard leaf kimchi phenolics profile after fermentation with or without Lactobacillus plantarum were determined using liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS). To correlate changes in phenolic profiles with anti-inflammatory activities of the fermentation extracts, lipopolysaccharides (LPS)-stimulated RAW 264.7 cells were treated with the extracts. We identified 12 phenolic acids in mustard leaf kimchi fermented with L. plantarum. Caffeic acid, chlorogenic acid, epicatechin, and catechin substituted the metabolite abundance. Extracts of mustard leaf kimchi fermented by L. plantarum (MLKL) markedly inhibited nitric oxide production by decreasing interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) expression levels in LPS-treated RAW 264.7 cells. Thus, fermentation with L. plantarum potentially improves the anti-inflammatory activities of mustard leaf and mustard leaf fermented with this microorganism may serve as a proper diet for the treatment of inflammation.


2012 ◽  
Vol 7 (6) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Eun-Jung Park ◽  
John M. Pezzuto ◽  
Kyoung Hwa Jang ◽  
Sang-Jip Nam ◽  
Sergio A. Bucarey ◽  
...  

The measurement of nitric oxide in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells is used as a model for evaluating the anti-inflammatory or chemopreventive potential of substances. Thienodolin, isolated from a Streptomyces sp. derived from Chilean marine sediment, inhibited nitric oxide production in LPS-stimulated RAW 264.7 cells (IC50 = 17.2 ± 1.2 μM). At both the mRNA and protein levels, inducible nitric oxide synthase (iNOS) was suppressed in a dose-dependent manner. Mitogen-activated protein kinases (MAPKs), one major upstream signaling pathway involved in the transcription of iNOS, were not affected by treatment of thienodolin. However, the compound blocked the degradation of IκBα resulting in inhibition of NF-κB p65 nuclear translocation, and inhibited the phosphorylation of signal transducers and activators of transcription 1 (STAT1) at Tyr701. This study supports further exploration of thienodolin as a potential therapeutic agent with a unique mechanistic activity.


Sign in / Sign up

Export Citation Format

Share Document