scholarly journals Interleukin-1 Family Cytokines in Liver Diseases

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Hiroko Tsutsui ◽  
Xianbin Cai ◽  
Shuhei Hayashi

The gene encoding IL-1 was sequenced more than 30 years ago, and many related cytokines, such as IL-18, IL-33, IL-36, IL-37, IL-38, IL-1 receptor antagonist (IL-1Ra), and IL-36Ra, have since been identified. IL-1 is a potent proinflammatory cytokine and is involved in various inflammatory diseases. Other IL-1 family ligands are critical for the development of diverse diseases, including inflammatory and allergic diseases. Only IL-1Ra possesses the leader peptide required for secretion from cells, and many ligands require posttranslational processing for activation. Some require inflammasome-mediated processing for activation and release, whereas others serve as alarmins and are released following cell membrane rupture, for example, by pyroptosis or necroptosis. Thus, each ligand has the proper molecular process to exert its own biological functions. In this review, we will give a brief introduction to the IL-1 family cytokines and discuss their pivotal roles in the development of various liver diseases in association with immune responses. For example, an excess of IL-33 causes liver fibrosis in mice via activation and expansion of group 2 innate lymphoid cells to produce type 2 cytokines, resulting in cell conversion into pro-fibrotic M2 macrophages. Finally, we will discuss the importance of IL-1 family cytokine-mediated molecular and cellular networks in the development of acute and chronic liver diseases.

2019 ◽  
Vol 20 (6) ◽  
pp. 1377 ◽  
Author(s):  
Takashi Ebihara ◽  
Ichiro Taniuchi

Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells and are a major source of innate TH2 cytokine secretion upon allergen exposure or parasitic-worm infection. Accumulating studies have revealed that transcription factors, including GATA-3, Bcl11b, Gfi1, RORα, and Ets-1, play a role in ILC2 differentiation. Recent reports have further revealed that the characteristics and functions of ILC2 are influenced by the physiological state of the tissues. Specifically, the type of inflammation strongly affects the ILC2 phenotype in tissues. Inhibitory ILC2s, memory-like ILC2s, and ex-ILC2s with ILC1 features acquire their characteristic properties following exposure to their specific inflammatory environment. We have recently reported a new ILC2 population, designated as exhausted-like ILC2s, which emerges after a severe allergic inflammation. Exhausted-like ILC2s are featured with low reactivity and high expression of inhibitory receptors. Therefore, for a more comprehensive understanding of ILC2 function and differentiation, we review the recent knowledge of transcriptional regulation of ILC2 differentiation and discuss the roles of the Runx transcription factor in controlling the emergence of exhausted-like ILC2s. The concept of exhausted-like ILC2s sheds a light on a new aspect of ILC2 biology in allergic diseases.


Author(s):  
Kiniwa Tsuyoshi ◽  
Kazuyo Moro

Abstract Group 2 innate lymphoid cells (ILC2s) are novel lymphocytes discovered in 2010. Unlike T or B cells, ILC2s are activated nonspecifically by environmental factors and produce various cytokines, thus playing a role in tissue homeostasis, diseases including allergic diseases, and parasite elimination. ILC2s were first reported as cells abundantly present in fat-associated lymphoid clusters in adipose tissue. However, subsequent studies revealed their presence in various tissues throughout the body, acting as key players in tissue-specific diseases. Recent histologic analyses revealed that ILC2s are concentrated in specific regions in tissues, such as the lamina propria and perivascular regions, with their function being controlled by the surrounding cells, such as epithelial cells and other immune cells, via cytokine and lipid production or by cell–cell interactions through surface molecules. Especially, some stromal cells are identified as the niche cells for ILC2s, both in the steady state and under inflammatory conditions, through the production of IL-33 or extracellular-matrix factors. Additionally, peripheral neurons reportedly co-localize with ILC2s and alter their function directly through neurotransmitters. These findings suggest that the different localizations or different cell–cell interactions might affect the function of ILC2s. Furthermore, generally, ILC2s are thought to be tissue-resident cells; however, they occasionally migrate to other tissues and perform a new role; this supports the importance of the microenvironment for their function. We summarize here the current understanding of how the microenvironment controls ILC2 localization and function with the aim of promoting the development of novel diagnostic and therapeutic methods.


2019 ◽  
Vol 11 (502) ◽  
pp. eaay3577
Author(s):  
Patrick M. Brunner

Group 2 innate lymphoid cells might form a pool of innate cells with capabilities beyond fighting parasites and mediating allergic diseases.


2019 ◽  
Vol 216 (12) ◽  
pp. 2763-2777 ◽  
Author(s):  
Lisa Knipfer ◽  
Anja Schulz-Kuhnt ◽  
Markus Kindermann ◽  
Vicky Greif ◽  
Cornelia Symowski ◽  
...  

Group 2 innate lymphoid cells (ILC2s) possess indispensable roles during type 2–mediated inflammatory diseases. Although their physiological and detrimental immune functions seem to depend on the anatomical compartment they reside, their tissue tropism and the molecular and immunological processes regulating the self-renewal of the local pool of ILC2s in the context of inflammation or infection are incompletely understood. Here, we analyzed the role of the CC-chemokine receptor CCR8 for the biological functions of ILC2s. In vitro and in vivo experiments indicated that CCR8 is in comparison to the related molecule CCR4 less important for migration of these cells. However, we found that activated mouse and human ILC2s produce the CCR8 ligand CCL1 and are a major source of CCL1 in vivo. CCL1 signaling to ILC2s regulates their proliferation and supports their capacity to protect against helminthic infections. In summary, we identify a novel chemokine receptor–dependent mechanism by which ILC2s are regulated during type 2 responses.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Eleonora Di Salvo ◽  
Marco Casciaro ◽  
Sebastiano Gangemi

AbstractInterleukin-33 (IL-33) is a 30KDa protein, which belongs to the Interleukin-1 cytokine family. It is a crucial regulator of innate and adaptive immune responses. This interleukin is additionally involved in the inflammatory reaction versus helminthic infections. Interleukin 33 acts on group 2 innate lymphoid cells and mast cells macrophages, dendritic cells and CD4 + Th2 cells eliciting a type 2 immune response. Moreover, the cytokine can activate the ST2 of Tregs, demonstrating its ability to downregulate inflammation. IL-33 has also an intracellular function by regulating transcription. The active IL-33 doesn’t have a signal peptide, so it’s not released across a normal secretory pathway; the interleukin is released when the cells are damages and acts like an “alarmin”. Its influence on immune activation could be slightly adjusted via fine epigenetic interactions involving cascade pathways and immune genes. Due to the diverse data emerged from different experimental research, we decided span literature to clarify, as much as possible, how IL-33 is influenced by and influence gene expression. The authors reported how its balance is influenced, according to the tissue considered. Fundamental for immune-related diseases, IL-33 has a key role in controlling inflammation. The understanding of the cytokine switch will be fundamental in a near future in order to block or activate some immune pathways. In fact, we could control interleukins effects not only by monoclonal antibodies but also by using siRNA or miRNAs for silencing or expressing key genes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ken Arae ◽  
Masashi Ikutani ◽  
Kotaro Horiguchi ◽  
Sachiko Yamaguchi ◽  
Youji Okada ◽  
...  

AbstractExposure to various antigens derived from house dust mites (HDM) is considered to be a risk factor for development of certain allergic diseases such as atopic asthma, atopic dermatitis, rhinitis and conjunctivitis. Chitin is an insoluble polysaccharide (β-(1–4)-poly-N-acetyl-d-glucosamine) and a major component in the outer shell of HDMs. Mice exposed to chitin develop asthma-like airway eosinophilia. On the other hand, several lines of evidence show that the effects of chitin on immune responses are highly dependent on the size of chitin particles. In the present study, we show that chitin induced production of IL-33 and TSLP by alveolar and bronchial epithelial cells, respectively, in mice. IL-25, IL-33 and TSLP were reported to be important for group 2 innate lymphoid cell (ILC2)-, but not Th2 cell-, dependent airway eosinophilia in a certain model using chitin beads. Here, we show that—in our murine models—epithelial cell-derived IL-33 and TSLP, but not IL-25, were crucial for activation of resident lung Th2 cells as well as group 2 innate lymphoid cells (ILC2s) to produce IL-5, resulting in development of chitin-induced airway eosinophilia. Our findings provide further insight into the underlying mechanisms of development of HDM-mediated allergic disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Mathä ◽  
Itziar Martinez-Gonzalez ◽  
Catherine A. Steer ◽  
Fumio Takei

Group 2 innate lymphoid cells (ILC2s) reside in both mucosal and non-mucosal tissues and play critical roles in the first line of defense against parasites and irritants such as allergens. Upon activation by cytokines released from epithelial and stromal cells during tissue damage or stimulation, ILC2s produce copious amounts of IL-5 and IL-13, leading to type 2 inflammation. Over the past 10 years, ILC2 involvement in a variety of human diseases has been unveiled. However, questions remain as to the fate of ILC2s after activation and how that might impact their role in chronic inflammatory diseases such as asthma and fibrosis. Here, we review studies that have revealed novel properties of post-activation ILC2s including the generation of immunological memory, exhausted-like phenotype, transdifferentiation and activation-induced migration.


Science ◽  
2018 ◽  
Vol 359 (6371) ◽  
pp. 114-119 ◽  
Author(s):  
Yuefeng Huang ◽  
Kairui Mao ◽  
Xi Chen ◽  
Ming-an Sun ◽  
Takeshi Kawabe ◽  
...  

Innate lymphoid cells (ILCs) are innate counterparts of adaptive T lymphocytes, contributing to host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs have been considered to be tissue-resident cells, but whether ILCs move between tissue sites during infection has been unclear. We show here that interleukin-25– or helminth-induced inflammatory ILC2s are circulating cells that arise from resting ILC2s residing in intestinal lamina propria. They migrate to diverse tissues based on sphingosine 1-phosphate (S1P)–mediated chemotaxis that promotes lymphatic entry, blood circulation, and accumulation in peripheral sites, including the lung, where they contribute to anti-helminth defense and tissue repair. This ILC2 expansion and migration is a behavioral parallel to the antigen-driven proliferation and migration of adaptive lymphocytes to effector sites and indicates that ILCs complement adaptive immunity by providing both local and distant tissue protection during infection.


Sign in / Sign up

Export Citation Format

Share Document