scholarly journals Closed-Loop Feedback Flank Errors Correction of Topographic Modification of Helical Gears Based on Form Grinding

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Huiliang Wang ◽  
Jubo Li ◽  
Yang Gao ◽  
Jianjun Yang

To increase quality, reduce heavy-duty gear noise, and avoid edge contact in manufacturing helical gears, a closed-loop feedback correction method in topographic modification tooth flank is proposed based on the gear form grinding. Equations of grinding wheel profile and grinding wheel additional radial motion are derived according to tooth segmented profile modification and longitudinal modification. Combined with gear form grinding kinematics principles, the equations of motion for each axis of five-axis computer numerical control forming grinding machine are established. Such topographical modification is achieved in gear form grinding with on-machine measurement. Based on a sensitivity analysis of polynomial coefficients of axis motion and the topographic flank errors by on-machine measuring, the corrections are determined through an optimization process that targets minimization of the tooth flank errors. A numerical example of gear grinding, including on-machine measurement and closed-loop feedback correction completing process, is presented. The validity of this flank correction method is demonstrated for tooth flank errors that are reduced. The approach is useful to precision manufacturing of spiral bevel and hypoid gears, too.

Author(s):  
C. S. Holmes

Starting with a description of a system for precision profile grinding of screw compressor rotors using closed-loop feedback for correction of profile errors, the paper goes on to describe a new system for the form grinding of precision spur, helical, and worm gears. This paper describes the development of high precision helical form grinding systems. The system was originally developed to satisfy the demanding accuracy requirements of screw compressor rotors, which will be understood from a description of their function. The system was then developed for the grinding of helical and spur gears to Quality 2/3 of DIN 3962. The paper describes both systems, with reasons for the design choices, and the results obtained. It is intended to be of interest to designers and manufacturers of rotors and gears.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Ningquan Wang ◽  
Ruxiu Liu ◽  
Norh Asmare ◽  
Chia-Heng Chu ◽  
Ozgun Civelekoglu ◽  
...  

An adaptive microfluidic system changing its operational state in real-time based on cell measurements through an on-chip electrical sensor network.


Small Science ◽  
2021 ◽  
pp. 2100002
Author(s):  
Tomohito Sekine ◽  
Yi-Fei Wang ◽  
Jinseo Hong ◽  
Yasunori Takeda ◽  
Reo Miura ◽  
...  

Surgery ◽  
2021 ◽  
Author(s):  
Brendan P. Lovasik ◽  
Katherine T. Fay ◽  
Ankit Patel ◽  
Jamil Stetler ◽  
Dominic Papandria ◽  
...  

Author(s):  
Yi-Pei Shih ◽  
Zhang-Hua Fong

Because the contact bearings of spiral bevel and hypoid gears are highly sensitive to tooth flank geometry, it is desirable to reduce the flank deviations caused by machine errors and heat treatment deformation. Several methods already proposed for flank correction are based on the cutter parameters, machine settings, and kinematical flank motion parameters of a cradle-type universal generator, which are modulated according to the measured flank topographic deviations. However, because of the recently developed six-axis Cartesian-type computer numerical control (CNC) hypoid generator, both face-milling and face-hobbing cutting methods can be implemented on the same machine using a corresponding cutter head and NC code. Nevertheless, the machine settings and flank corrections of most commercial Cartesian-type machines are still translated from the virtual cradle-type universal hypoid generator. In contrast, this paper proposes a flank-correction methodology derived directly from the six-axis Cartesian-type CNC hypoid generator in which high-order correction is easily achieved through direct control of the CNC axis motion. The validity of this flank correction method is demonstrated using a numerical example of Oerlikon Spirac face-hobbing hypoid gears made by the proposed Cartesian-type CNC machine.


2014 ◽  
Vol 889-890 ◽  
pp. 958-961
Author(s):  
Huan Ming Chen

It is very important to simulate driver's manipulation for people - car - road closed loop simulation system. In this paper, the driver model is divided into two parts, linear vehicle model is used to simulate the driver's driving experience, and closed-loop feedback is used to characterize the driver's emergency feedback. The lateral acceleration of vehicle is used as feedback in closed loop control. Simulation results show that the smaller lateral acceleration requires the less closed-loop feedback control. The driver model can accurately track the target path, which can be used to simulate the manipulation of the driver. The driver model can be used for people - car - road closed loop simulation to evaluate vehicle handling stability.


Author(s):  
Sivakumar Ramalingam ◽  
Hanumath VV Prasad ◽  
Srinivasa Prakash Regalla

The closed loop feedback control system of an Automated Manual Transmission (AMT) electro-pneumatic clutch actuator is used for intelligent real time condition monitoring, enhanced diagnostics and prognostic health management of the dry clutch system, by integrating with the existing gearbox prognostics observer. The real-time sensor data of the clutch actuator piston position is analyzed for monitoring the condition of the clutch system. Original parameters of the new clutch are stored in the Electrically Erasable Programmable Read-only Memory (EEPROM) of the AMT controller and the real-time data is used by the observer for assessing the degradation/wear of the frictional clutch parts. Also, clutch slip during torque transmission is monitored, using the engine speed and the gearbox input shaft speed from Controller Area Network (CAN). Condition monitoring of clutch system provides enhanced prognostic functionality for AMT system which ensures consistent clutch performance, gear shift quality and timely warning for recalibration, repair and/or replacement of the critical wear and tear parts. Also, systematic analysis of the monitored data provides an accurate diagnosis of a developing fault. Thus, with the advanced control systems in place for AMT, a closed loop feedback based condition monitoring system is modelled for improved diagnostics and prognostics of AMT clutch system.


Sign in / Sign up

Export Citation Format

Share Document