scholarly journals Proteins of Bartonella bacilliformis: Candidates for Vaccine Development

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Cesar Henriquez-Camacho ◽  
Palmira Ventosilla ◽  
Michael F. Minnick ◽  
Joaquim Ruiz ◽  
Ciro Maguiña

Bartonella bacilliformis is the etiologic agent of Carrión’s disease or Oroya fever. B. bacilliformis infection represents an interesting model of human host specificity. The notable differences in clinical presentations of Carrión’s disease suggest complex adaptations by the bacterium to the human host, with the overall objectives of persistence, maintenance of a reservoir state for vectorial transmission, and immune evasion. These events include a multitude of biochemical and genetic mechanisms involving both bacterial and host proteins. This review focuses on proteins involved in interactions between B. bacilliformis and the human host. Some of them (e.g., flagellin, Brps, IalB, FtsZ, Hbp/Pap31, and other outer membrane proteins) are potential protein antigen candidates for a synthetic vaccine.

2006 ◽  
Vol 53 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Kristian Riesbeck ◽  
Thuan Tong Tan ◽  
Arne Forsgren

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is located within MID962-1200. In parallel, MID is stimulatory for B lymphocytes through the IgD B cell receptor. M. catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) are multifunctional outer membrane proteins that can bind complement and extracellular matrix proteins such as vitronectin and fibronectin. An interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and UspA1/A2 has also been observed. Moreover, UspA1/A2 has a unique feature to interfere with the innate immune system of complement by binding C3. Taken together, a growing body of knowledge on M. catarrhalis outer membrane proteins MID and UspA1/A2 and their precise interactions with the human host make them promising vaccine candidates in a future multicomponent vaccine.


2014 ◽  
Vol 82 (11) ◽  
pp. 4767-4777 ◽  
Author(s):  
David Montero ◽  
Paz Orellana ◽  
Daniela Gutiérrez ◽  
Daniela Araya ◽  
Juan Carlos Salazar ◽  
...  

ABSTRACTShiga-toxin producingEscherichia coli(STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensalE. colistrain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization–tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Luis A. Vega ◽  
Kayla M. Valdes ◽  
Ganesh S. Sundar ◽  
Ashton T. Belew ◽  
Emrul Islam ◽  
...  

ABSTRACTAs an exclusively human pathogen,Streptococcus pyogenes(the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene,cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators ofStreptococcus mutans(MetR),Streptococcus iniae(CpsY), andStreptococcus agalactiae(MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survivalin vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest thein vitrophenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE,speB,spd,nga[spn],prtS[SpyCEP], andsse) and cell surface-associated factors of GAS (emm1,mur1.2,sibA[cdhA], andM5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.


2008 ◽  
Vol 76 (11) ◽  
pp. 5016-5027 ◽  
Author(s):  
Marta Biedzka-Sarek ◽  
Saara Salmenlinna ◽  
Markus Gruber ◽  
Andrei N. Lupas ◽  
Seppo Meri ◽  
...  

ABSTRACT Yersinia enterocolitica is an enteric pathogen that exploits diverse means to survive in the human host. Upon Y. enterocolitica entry into the human host, bacteria sense and respond to variety of signals, one of which is the temperature. Temperature in particular has a profound impact on Y. enterocolitica gene expression, as most of its virulence factors are expressed exclusively at 37°C. These include two outer membrane proteins, YadA and Ail, that function as adhesins and complement resistance (CR) factors. Both YadA and Ail bind the functionally active complement alternative pathway regulator factor H (FH). In this study, we characterized regions on both proteins involved in CR and the interaction with FH. Twenty-eight mutants having short (7 to 41 amino acids) internal deletions within the neck and stalk of YadA and two complement-sensitive site-directed Ail mutants were constructed to map the CR and FH binding regions of YadA and Ail. Functional analysis of the YadA mutants revealed that the stalk of YadA is required for both CR and FH binding and that FH appears to target several conformational and discontinuous sites of the YadA stalk. On the other hand, the complement-sensitive Ail mutants were not affected in FH binding. Our results also suggested that Ail- and YadA-mediated CR does not depend solely on FH binding.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1409
Author(s):  
Wasim A. Prates-Syed ◽  
Lorena C. S. Chaves ◽  
Karin P. Crema ◽  
Larissa Vuitika ◽  
Aline Lira ◽  
...  

Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.


1994 ◽  
Vol 40 (2) ◽  
pp. 303-308 ◽  
Author(s):  
B J Carroll

Abstract Manic depressive illness (bipolar disorder) is the mood disorder classically considered to have a strong biological basis. During manic depressive cycles, patients show dramatic fluctuations of mood, energy, activity, information processing, and behaviors. Theories of brain function and mood disorders must deal with the case of bipolar disorder, not simply unipolar depression. Shifts in the nosologic concepts of how manic depression is related to other mood disorders are discussed in this overview, and the renewed adoption of the Kraepelinian "spectrum" concept is recommended. The variable clinical presentations of manic depressive illness are emphasized. New genetic mechanisms that must be considered as candidate factors in relation to this phenotypic heterogeneity are discussed. Finally, the correlation of clinical symptom clusters with brain systems is considered in the context of a three-component model of manic depression.


Science ◽  
2020 ◽  
pp. eabb9983 ◽  
Author(s):  
Yasunori Watanabe ◽  
Joel D. Allen ◽  
Daniel Wrapp ◽  
Jason S. McLellan ◽  
Max Crispin

The emergence of the betacoronavirus, SARS-CoV-2, the causative agent of COVID-19, represents a significant threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, which mediates cell entry and membrane fusion. SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in protein folding and immune evasion. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.


2001 ◽  
Vol 69 (7) ◽  
pp. 4373-4381 ◽  
Author(s):  
Sherry A. Coleman ◽  
Michael F. Minnick

ABSTRACT The invasion-associated locus A and B genes (ialAB) ofBartonella bacilliformis were previously shown to confer an erythrocyte-invasive phenotype upon Escherichia coli, indirectly implicating their role in virulence. We report the first direct demonstration of a role for ialB as a virulence factor in B. bacilliformis. The presence of a secretory signal sequence and amino acid sequence similarity to two known outer membrane proteins involved in virulence suggested that IalB was an outer membrane protein. To develop an antiserum for protein localization, the ialB gene was cloned in frame into an expression vector with a six-histidine tag and under control of thelacZ promoter. The IalB fusion protein was purified by nickel affinity chromatography and used to raise polyclonal antibodies. IalB was initially localized to the bacterial membrane fraction. To further localize IalB, B. bacilliformis inner and outer membranes were fractionated by sucrose density gradient centrifugation and identified by appearance, buoyant density (ρ), and cytochromeb content. Inner and outer membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and IalB was positively identified by Western blot. Contrary to expectations, IalB was localized to the inner membrane of the pathogen. To directly demonstrate a role for IalB in erythrocyte parasitism, the B. bacilliformis ialB gene was disrupted by insertional mutagenesis. The resulting ialB mutant strain was complemented in trans with a replicative plasmid encoding the full-length ialB gene. PCR and high-stringency DNA hybridization confirmed mutagenesis and transcomplementation events. Abrogation and restoration of ialB expression was verified by SDS-PAGE and immunoblotting. In vitro virulence assays showed that mutagenesis of ialB decreased bacterial association and invasion of human erythrocytes by 47 to 53% relative to controls. Transcomplementation of ialB restored erythrocyte association and invasion rates to levels observed in the parental strain. These data provide direct evidence for IalB's role in erythrocyte parasitism and represent the first demonstration of molecular Koch's postulates for a Bartonella species.


Sign in / Sign up

Export Citation Format

Share Document