scholarly journals Effect of Zn/Al Layered Double Hydroxide Containing 2-Hydroxy-4-n-octoxy-benzophenone on UV Aging Resistance of Asphalt

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chao Peng ◽  
Jianying Yu ◽  
Jing Dai ◽  
Jian Yin

UV radiation is a main factor to reduce the service life of asphalt pavement due to the UV aging of asphalt binder. To obtain enhanced UV aging resistance, an organic UV absorber called 2-hydroxy-4-n-octoxy-benzophenone (HNOB) had been intercalated into an inorganic UV absorber called Zn/Al layered double hydroxide (LDH) to play a combined anti-UV role in asphalt binder. Fourier transform infrared spectroscopy revealed that HNOB anions have been intercalated into the interlayer galleries of Zn/Al-LDH containing HNOB anions (Zn/Al-HNOB−-LDH). X-ray diffraction results of Zn/Al-LDH containingCO32−anions (Zn/Al-CO32--LDH) andZn/Al-CO32--LDH/styrene-butadiene-styrene (SBS) modified asphalt disclosed that asphalt molecules entered into LDH interlayer galleries to form an expanded phase structure. UV-Vis absorbance patterns showed that Zn/Al-HNOB−-LDH has a better capacity of blocking UV light due to the synergetic effect of HNOB and Zn/Al-LDH. The chemical fractions analysis, conventional physical tests, and rheological tests of SBS modified asphalt,Zn/Al-CO32--LDH/SBSmodified asphalt, and Zn/Al-HNOB−-LDH/SBS modified asphalt before and after UV aging testified that Zn/Al-HNOB−-LDH can improve the UV aging resistance of SBS modified asphalt more significantly.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5672
Author(s):  
Xuewen Zheng ◽  
Wenyuan Xu ◽  
Shuangrui Xie

In order to explore the influence mechanism of carbon nanotubes on the ultraviolet (UV) aging properties of the SBS-modified asphalt binder, the changes of functional groups in the one-dimensional infrared spectrum and two-dimensional infrared correlation spectrum are studied in this paper. The results show that the UV aging process of the SBS-modified asphalt binder is the process of alkane chain cleavage and reorganization, the formation of oxygen-containing functional groups and decomposition of SBS. The incorporation of carbon nanotubes can reduce the mutual conversion of methyl and methylene functional groups, inhibit the decomposition of butadiene and the destruction of C = C double bonds in SBS. The degradation of SBS during the process of UV aging leads to the change of many functional groups and acceleration of the aging of the SBS-modified asphalt binder. The addition of carbon nanotubes can effectively alleviate the degradation of SBS and the formation of oxygen-containing functional groups at the early stage of UV aging, and reduce the influence of these two changes on other functional groups; thus, improving the anti-aging performance of the SBS-modified asphalt binder.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1111 ◽  
Author(s):  
Huanan Yu ◽  
Xianping Bai ◽  
Guoping Qian ◽  
Hui Wei ◽  
Xiangbing Gong ◽  
...  

Styrene Butadiene Styrene (SBS) polymer-modified asphalt binders have become widely used in asphalt pavement because of their advantages in high- and low-temperature performance and fatigue resistance. Asphalt pavement is inevitably exposed to sunlight and ultraviolet (UV) radiation during its construction and service life. However, consideration of the aging effect of UV radiation is still limited in current pavement design and evaluation systems. In order to evaluate the impact of UV radiation on the aging properties of SBS-modified asphalt binders, UV aging tests were performed on Rolling Thin Film Oven Test (RTFOT)-aged samples with different UV radiation intensities and aging times. Sixteen different groups of tests were conducted to compare the rheological properties and functional group characteristics of SBS-modified asphalt binders. Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR), FTIR, and SEM tests were conducted to evaluate the aging mechanisms in various UV aging conditions. The results found that UV radiation seriously destroys the network structure formed by the cross-linking effect in SBS-modified asphalt binders, which aggravates the degradation of SBS and results in a great change of rheological properties after UV aging. The nature of SBS-modified asphalt binder aging resulted from the degradation of SBS and the changes of asphalt binder base composition, which lead to the transformation of colloidal structure and the deterioration of asphalt binder performance. The tests also found that continuous UV radiation can increase shrinkage stress in the asphalt binder surface and leads to surface cracking of the asphalt binder.


2021 ◽  
pp. 128139
Author(s):  
Hengbin Liu ◽  
Zhengqi Zhang ◽  
Jinqian Xie ◽  
Zengjian Gui ◽  
Naiqiang Li ◽  
...  

2021 ◽  
Vol 302 ◽  
pp. 124131
Author(s):  
Jing Li ◽  
Jing Yang ◽  
Yu Liu ◽  
Zhenxia Zhao ◽  
Xiaoying Tang ◽  
...  

2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


2021 ◽  
Vol 11 (19) ◽  
pp. 9242
Author(s):  
Xiaobing Chen ◽  
Yunfeng Ning ◽  
Yongming Gu ◽  
Ronglong Zhao ◽  
Jinhu Tong ◽  
...  

To investigate the influence of multiple cycles of aging and rejuvenation on the rheological, chemical, and morphological properties of styrene–butadiene–styrene (SBS)-modified asphalt-binders, the asphalt-binders were aged using two laboratory simulation methods, namely a rolling thin film oven (RTFO) test for short-term aging and pressure aging vessel (PAV) for long-term aging. The asphalt-binders were then rejuvenated with three types of rejuvenators (Type I, II, and III) with different dosages (i.e., 6%, 10%, and 14% for the first, second, and third rejuvenation, respectively). A dynamic shear rheometer (DSR) was then used to analyze the effect of rejuvenators on the rheological properties of all the asphalt-binders. The changes in the functional groups and microscopic morphology in the process of multiple aging and rejuvenation cycles were studied using Fourier transform infrared (FTIR) and atomic force microscopy (AFM). The results indicated that the three rejuvenators could soften the stiffness and restore the microstructures of the aged asphalt-binders in the process of repeated aging and rejuvenation from DSR and AFM testing. Considering the rutting and fatigue properties, the Type I rejuvenator exhibited the potential to achieve the desired rejuvenation effects under multiple rejuvenation cycles. During the multiple aging and rejuvenation cycles, the aging resistance of SBSMA decreased gradually from the FTIR results. This inherently limited the number of repeated rejuvenation cycles. This research is conducive to promoting the application of repeated penetrating rejuvenation.


2016 ◽  
Vol 18 (20) ◽  
pp. 13811-13819 ◽  
Author(s):  
Shoji Iguchi ◽  
Soichi Kikkawa ◽  
Kentaro Teramura ◽  
Saburo Hosokawa ◽  
Tsunehiro Tanaka

Layered double hydroxide (LDH) photocatalysts, including Ni–Al LDH, are active for the photocatalytic conversion of CO2 in water under UV light irradiation.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5067 ◽  
Author(s):  
Guoping Qian ◽  
Changdong Yang ◽  
Haidong Huang ◽  
Xiangbing Gong ◽  
Huanan Yu

Ultraviolet (UV) aging degrades the life span of asphalt pavement, nanomaterials used as modifiers exhibit good shielding function on UV light, but generally degrade the low-temperature property of asphalt, a compound modification was found to be a solution. In this study, nano-SiO2 and rubber powder were blended together with base asphalt to prepare compound modified asphalt. Compound modified asphalt with different blending dosages were subjected to UV light via a self-made UV aging simulation chamber. Basic performance tests and rheological tests were conducted including the UV aging influence. An optimum compound ratio was finally recommended based on the goal to remove the adverse effect of nano-SiO2 on the thermal cracking. Results show that the anti-UV aging property of asphalt is improved obviously due to the blocking function of nano-SiO2 and carbon black in rubber powder, and the enhancing effect of nano-SiO2 is found to be the most significant.


Sign in / Sign up

Export Citation Format

Share Document