scholarly journals A Preliminary Investigation on Processing, Mechanical and Thermal Properties of Polyethylene/Kenaf Biocomposites with Dolomite Added as Secondary Filler

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Mohammad Naqiuddin Mohd Zolkepli ◽  
Azmah Hanim Mohamed Ariff ◽  
Ahmad Khuzairi Sudari ◽  
Mazni Abu Zarin

In this preliminary investigation, dolomite was added to the low-density polyethylene/kenaf core fiber (LDPE/KCF) biocomposites by using an internal mixer at 150°C, followed by compression molding at the same temperature. The dolomite contents were varied from 0 to 18 wt.%. The processing and stabilization torques, the stock and stabilization temperatures, the tensile and impact strengths, and the thermal decomposition properties of the prepared biocomposites have been characterized and analyzed. The processing recorder results of the LDPE/KCF biocomposites indicated that the stabilization torques and stabilization temperatures have increased with the addition of dolomite. Mechanical testing results showed that the presence of dolomite has increased the tensile stress, tensile modulus, and impact strength of the LDPE/KCF biocomposites. Thermogravimetric analysis results displayed that the thermal decomposition properties of the biocomposites have also increased with the increase of the dolomite content. This research led to the conclusion that the addition of dolomite in lower amounts (<20 wt.%) could act as a secondary filler for improving the processing, mechanical and thermal properties of LDPE/KCF biocomposites without surface treatments of the natural fiber.

2021 ◽  
pp. 50929
Author(s):  
Seira Morimune‐Moriya ◽  
Taiki Hashimoto ◽  
Ryohei Haga ◽  
Hiroaki Tanahashi

2011 ◽  
Vol 18 (6) ◽  
pp. 2275-2284 ◽  
Author(s):  
Muhammad J. Khan ◽  
Abdulhadi A. Al-Juhani ◽  
Reyad Shawabkeh ◽  
Anwar Ul-Hamid ◽  
Ibnelwaleed A. Hussein

2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 866 ◽  
Author(s):  
Alexandre L. Pereira ◽  
Mariana D. Banea ◽  
Jorge S.S. Neto ◽  
Daniel K.K. Cavalcanti

The main objective of this work was to investigate the effect of hybridization on the mechanical and thermal properties of intralaminar natural fiber-reinforced hybrid composites based on sisal. Ramie, sisal and curauá fibers were selected as natural fiber reinforcements for the epoxy matrix based composites, which were produced by the hand lay-up technique. Tensile, flexural and impact tests were carried out according to American society for testing and materials (ASTM) standards to characterize the hybrid composites, while differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to evaluate the thermal properties. It was found that the mechanical properties are improved by hybridization of sisal based composites. The thermal analysis showed that the hybridization did not significantly affect the thermal stability of the composites. A scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. The SEM images showed a brittle fracture of the matrix and fiber breakage near the matrix.


Author(s):  
Yuanxin Zhou ◽  
Mohammad Monirul Hasan ◽  
Shaik Jeelani

In the present study, effect of vapor grown carbon nanofiber on the mechanical and thermal properties of polypropylene was investigated. Firstly, nanofibers were dry-mixed with polypropylene powder and extruded into filaments by using a single screw extruder. Then the tensile tests were performed on the single filament at the strain rate range from 0.02/min to 2/min. Experiments results show that both neat and nano-phased polypropylene were strain rate strengthening material. The tensile modulus and yield strength both increased with increasing strain rate. Experimental results also show that infusing nanofiber into polypropylene can increase tensile modulus and yield strength, but decrease the failure strain. At the same time, thermal properties of neat and nano-phased polypropylene were characterized by TGA. TGA results have showed that the nanophased system is more thermally stable. At last, a nonlinear constitutive equation has been developed to describe strain rate sensitive behavior of neat and nano-phased polypropylene.


2013 ◽  
Vol 795 ◽  
pp. 433-437 ◽  
Author(s):  
S.T. Sam ◽  
N.Z. Noriman ◽  
S. Ragunathan ◽  
O.H. Lin ◽  
H. Ismail

Soya spent powder as an inexpensive and renewable source has been used as a filler for linear-low density polyethylene (LLDPE) in this study. Linear-low density polyethylene (LLDPE)/soya spent powder composites were prepared by using Haake internal mixer. The mixing time was 10 minutes at 150°C with rotor speed 50 rpm. Epoxidised natural rubber (ENR 50) has been used as a compatibilizer in the present study. The thermal properties of the LLDPE/soya spent powder composites with and without ENR were studied with a differential scanning calorimetry (DSC). The crystallinity of the LLDPE/soya spent powder composites decreased with increasing soya spent powder content. However, the addition of ENR 50 as a compatibilizer increased the crystallinity of the LLDPE/soya spent powder composites.


Sign in / Sign up

Export Citation Format

Share Document