scholarly journals The Effect of Climate Change on Variations in Dew Amount in a Paddy Ecosystem of the Sanjiang Plain, China

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yingying Xu ◽  
Baixing Yan ◽  
Jie Tang

Due to global warming, a drying and warming trend has been observed over the last 50 years in the Sanjiang Plain of Heilongjiang Province, China, which could significantly affect the condensation of vapor in paddy ecosystems. Dew is a crucial factor in the water and nutrient cycling of farmland ecosystems, and it exerts an important influence on fertilization and other agricultural activities. In order to reveal the effects of global warming on dew variation in a paddy ecosystem, anin situexperiment was conducted in paddy fields in the Sanjiang Plain during the growing seasons of 2011 to 2013. Dew was collected and measured with a poplar stick. The results of correlation analysis between meteorological factors and dew intensity in the paddy ecosystem indicate that the dew point temperature and relative humidity significantly influenced the dew intensity. Based on synchronous meteorological data, a stepwise linear multivariation regression model was established to predict dew amount. The model successfully interpreted the relationship between simulated and measured dew intensity. The results suggest that a warmer and drier climate would lead to a reduction in dew amount because water cannot condense when relative humidity falls below 71%.

2014 ◽  
Vol 535 ◽  
pp. 360-363 ◽  
Author(s):  
Ying Ying Xu ◽  
Bai Xing Yan ◽  
Hui Zhu

Dew is one of crucial factors in the water and nutrient cycle in wetland ecosystem, especially playing an important role in the water and nutrients balance. Identifying the meteorological factors which affect the formation of dew is necessary. The meteorological condition is the key factor of dew condensing; therefore, it is necessary to identify the relationship between meteorological factors and dew formation. Dew amount was monitored and collected in the Sanjiang Plain. The highest mean dew amounts at Sanjiang Plain were observed in Craex lasiocarpa community (0.130mm night-1). Nearly 50% dew events correspond to the smallest yields (<0.04 mm="" night="" sup="">-1) and it is implies there are around half days are unsuitable for dew condensation in Craex lasiocarpa community. Our study impies that dew data, taken in growthing season of 2003 to 2005 and 2008, correlated positive with relative humidity, dew point temperature, and vapour pressure.


2014 ◽  
Vol 522-524 ◽  
pp. 34-37
Author(s):  
Ying Ying Xu ◽  
Bai Xing Yan ◽  
Hui Zhu

Dew is the condensation of atmospheric moisture on objects that have radiated sufficient heat to lower their temperature below the dew point temperature. Dew amount was collected by woodstick in Craex lasiocarpa which the main community at Sanjiang Plain. The average daily cumulated dew yield, which is the important parameter for dew harvesting, reach the peak in August or September. The result implies there are around one fifth days are unsuitable for dew condensation. Dew amount correlated negatively with wind speed.


2012 ◽  
Vol 41 (4) ◽  
pp. 319-324 ◽  
Author(s):  
Xiao-Hui Liu ◽  
Gui-Hua Dong ◽  
Yuan Zhang ◽  
Xian-Guo Lu ◽  
Ming Jiang

MAUSAM ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 391-402
Author(s):  
R.P. SAMUI ◽  
G. JOHN ◽  
S.P. RANSURE ◽  
M.A. PACHANKAR

Evaporation, rainfall and meteorological data for the period 1971-2004 for 58 well distributed stations over India were selected for the study. Trends of evaporation and rainfall in five regions, viz., Northwest, North, Northeast, Central and Peninsular regions of India during different crop growing seasons, viz., kharif, rabi and summer and the meteorological factors contributing towards the trend were analyzed. Annual evaporation shows decreasing trend in all the regions of the country. Trends in seasonal evaporation during kharif, rabi and summer seasons also showed decreasing trends in Northwest, North, Central and Peninsular regions of the country while few locations in Northeast India, viz., Guwahati, Dibrugarh and Tocklai showed significant increasing trend in evaporation during kharif and rabi seasons. No significant trend in annual and seasonal rainfall was observed in Indian region except a few stations in peninsular India where increasing trend was observed. Normalized anomalies of maximum temperature, relative humidity and vapour pressure showed increasing trend in Northwest and Northern regions during all the three crop growing seasons while decreasing trend or no trend in wind velocity was observed in all the regions except in central region where increasing trend was observed during summer season. As evaporation relates to the meteorological elements, viz., temperature, sunshine duration, wind velocity and relative humidity, the likely causative meteorological factors for such changes are studied. Increasing trends in maximum temperature was observed in central and peninsular inland regions of the country during rabi and summer seasons while slight decreasing trends were observed in the Northeast region during kharif season. High positive correlation found between maximum temperature and wind velocity indicates that the trend in evaporation is mostly influenced by these two factors. Increase in humidity and decrease in bright sunshine hours were both important and found correlated with the decrease in evaporation.


2017 ◽  
Vol 49 (1) ◽  
pp. 251-265 ◽  
Author(s):  
Xinyi Song ◽  
Kui Zhu ◽  
Fan Lu ◽  
Weihua Xiao

Abstract It is essential to understand the changing patterns in reference evapotranspiration (ET0) and its relation to climate variables. In this study, meteorological data obtained from the Sanjiang Plain (SJP) between 1959 and 2013 are used to calculate ET0 via the Penman–Monteith method. This study analyses the spatial and temporal changes of ET0 and determines which meteorological variables have an impact on this. The Mann–Kendall test, moving t-test, sensitivity analysis and simulated results have been used to conduct these analyses. The results demonstrate the following. (1) Spatially, there is an increasing trend in the annual ET0 values in agricultural areas. However, significant decreasing trends (P &lt; 0.05) can be found in mountainous regions. (2) Temporally, two abrupt changes can be detected in the early 1980s and the late 1990s for the entire SJP, leading to large inter-annual differences. (3) Sensitivity analysis shows that relative humidity (RH) is the most sensitive climate variable and has a negative influence on ET0, followed by temperature, sunshine duration and wind speed, all of which exert positive impacts. (4) The simulated result shows that ET0 is most sensitive to RH. However, significant reductions in wind speed can exert large influences on the ET0 values.


2015 ◽  
Vol 7 (1) ◽  
pp. 198-211 ◽  
Author(s):  
Qiang Fu ◽  
Tianxiao Li ◽  
Tienan Li ◽  
Heng Li

The wavelet theory, Mann-Kendall trend test and ArcGIS spatial analysis theory were used to analyze annual precipitation and mean temperature data that were collected at seven national weather stations in the Sanjiang Plain from 1956 to 2013 to identify the temporal-spatial patterns of annual precipitation changes caused by climate change conditions. The results showed that the climate in the Sanjiang Plain experienced a significant warming trend over the past 50 years, with the temperature increasing by 1.35 °C since the 1960s. Additionally, the precipitation also exhibited certain trend characteristics, which revealed a larger difference in different areas. The annual precipitation exhibited 23-year and 12-year periodic variation characteristics, and the period with above-average annual precipitation levels is expected to continue after 2013. The spatial distributions of the mean annual precipitation for different years were different, whereas the spatial distribution of the multi-year mean precipitation was relatively uniform. The annual variation amplitude of the annual precipitation in the central area was larger than that in the south. The overall inter-annual fluctuation of the annual precipitation was relatively small with a mostly normal distribution. The results can provide guidance for scientific investigations and the reasonable use of rainfall resources in the Sanjiang Plain.


2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Hezhen Lou ◽  
Xijin Wu ◽  
Xiaoyu Ren ◽  
Shengtian Yang ◽  
Mingyong Cai ◽  
...  

Global climate change, especially the snow drought events, is causing extreme weather events influencing regional vegetation growth and terrestrial ecosystem stability in a long-term and persistent way. In this study, the Sanjiang Plain was selected, as this area has been experiencing snow drought in the past two decades. Logistic models, combined with multisource remote sensing and unmanned aerial vehicle (UAV) data, as well as the meteorological data over the past 20 years, were used to calculate sixteen phenological periods and biomass. The results show that (1) over the past two decades, snow drought has been based on the snow accumulation and has been occurring more frequently, wider-ranging and more severely; (2) snow drought has advanced the forest start of season (SOS)/end of season (EOS) by 6/5 days, respectively; (3) if the snowfall is greater than 80% of a normal year, the SOS/EOS of grass is postponed by 8/6 days; conversely, if it is less than 80%, the SOS/EOS are advanced by 7/5 days; and (4) biomass decreased approximately 0.61%, compared with an abundant snowfall year. Overall, this study is the first to explore how snow drought impacts the phenological period in a mid-high latitude area, and more attention should be paid to these unknown risks to the ecosystem.


2021 ◽  
Author(s):  
Amin Sadeqi ◽  
Ercan Kahya

Abstract Global warming has become a major threat to life on the earth, and recognizing its impacts can definitely be useful in controlling and mitigating its adverse effects. In this study, time series variations in air temperature indices (frost days, Tmin, Tmax, Tmean, Tminmin, Tmaxmax, Tsoil-min), De Martonne aridity index (IDM) and total precipitation were investigated using a long-term meteorological data (1960–2019) of 31 synoptic stations throughout Iran. The results indicated that more than 94% of the stations had increasing trend in Tmean, in which about 70% were significant at the 0.05 level. The average increase in Tmin was calculated approximately 1.7 times higher than Tmax and also the increase in Tminmin was about 2.5 times higher than Tmaxmax. Our findings showed that, abrupt changes in Tmin and Tmax mostly observed in the 1990s were upward in 87% of all the stations. Increase in annual Tmean at a rate of 0.3 ºC per decade and reduction of 5 mm per decade in total annual precipitation led to decrease in the IDM aridity index by 0.35 per decade in Iran. The intensity of air temperature increase was higher in tropical regions than in cold regions. Trend analysis in the partial series before and after a change point showed that the trends in Tmean before the change point were negative, but turned to positive afterwards in some stations mostly located in the northwestern cold and mountainous regions of the country. Our results revealed that the climate in Iran, in general, has become warmer and drier in the past 60 years and continuation of the current global warming trend will exacerbate this problem in the future.


Sign in / Sign up

Export Citation Format

Share Document