scholarly journals Coordinated Control of Pressure Difference and Rising Velocity for Stratospheric Airship with Thermal Effects

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Luhe Hong ◽  
Hui-Yu Jin ◽  
Xianwu Lin ◽  
Weiyao Lan

Ascending control of stratospheric airship is a challenging control problem, especially if both the rising velocity and the pressure difference between the inside and outside of the airship are required to be controlled simultaneously during ascending. In this paper, a coordinated scheme to control pressure difference and rising velocity of stratospheric airship with vector thrust is presented. With the control scheme, the airship maintains the pressure difference by exhausting air with feedback control. At the same time, the supplemental thrust is generated to compensate the buoyancy fluctuation caused by exhausting air so that the airship’s vertical velocity can track a given reference trajectory. Simulations show that the coordinated control scheme ensures that the airship rises to the altitude of 20 km steadily and rapidly while the pressure difference is always in the safe range. Furthermore, the control scheme is robust enough to the thermal disturbance caused by solar radiation and other thermal processes, which is calculated with partial differential equations.

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199399
Author(s):  
Xiaoguang Li ◽  
Bi Zhang ◽  
Daohui Zhang ◽  
Xingang Zhao ◽  
Jianda Han

Shape memory alloy (SMA) has been utilized as the material of smart actuators due to the miniaturization and lightweight. However, the nonlinearity and hysteresis of SMA material seriously affect the precise control. In this article, a novel disturbance compensation-based adaptive control scheme is developed to improve the control performance of SMA actuator system. Firstly, the nominal model is constructed based on the physical process. Next, an estimator is developed to online update not only the unmeasured system states but also the total disturbance. Then, the novel adaptive controller, which is composed of the nominal control law and the compensation control law, is designed. Finally, the proposed scheme is evaluated in the SMA experimental setup. The comparison results have demonstrated that the proposed control method can track reference trajectory accurately, reject load variations and stochastic disturbances timely, and exhibit satisfactory robust stability. The proposed control scheme is system independent and has some potential in other types of SMA-actuated systems.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 518
Author(s):  
Xiangwu Yan ◽  
Linlin Yang ◽  
Tiecheng Li

With the increasing penetration level of wind turbine generators (WTGs) integrated into the power system, the WTGs are enforced to aid network and fulfill the low voltage ride through (LVRT) requirements during faults. To enhance LVRT capability of permanent magnet synchronous generator (PMSG)-based WTG connected to the grid, this paper presents a novel coordinated control scheme named overspeed-while-storing control for PMSG-based WTG. The proposed control scheme purely regulates the rotor speed to reduce the input power of the machine-side converter (MSC) during slight voltage sags. Contrarily, when the severe voltage sag occurs, the coordinated control scheme sets the rotor speed at the upper-limit to decrease the input power of the MSC at the greatest extent, while the surplus power is absorbed by the supercapacitor energy storage (SCES) so as to reduce its maximum capacity. Moreover, the specific capacity configuration scheme of SCES is detailed in this paper. The effectiveness of the overspeed-while-storing control in enhancing the LVRT capability is validated under different levels of voltage sags and different fault types in MATLAB/Simulink.


Author(s):  
Tarek Mahmoud

Adaptive control scheme based on the least squares support vector machine networkRecently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving increasing attention in nonlinear system identification and control due to its generalization performance. This paper develops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts: the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least squares support vector machine network (MRWLS-SVM) as a predictor model, and the controller part that is developed to track a reference trajectory. By means of the Lyapunov stability criterion, stability analysis for the tracking errors is performed. Finally, simulation studies are performed to demonstrate the capability of the developed approach in controlling a pH process.


2021 ◽  
Author(s):  
Jian Li ◽  
Wenqing Xu ◽  
Zhaojing Wu ◽  
Yungang Liu

Abstract This paper is devoted to the tracking control of a class of uncertain surface vessels. The main contributions focus on the considerable relaxation of the severe restrictions on system uncertainties and reference trajectory in the related literature. Specifically, all the system parameters are unknown and the disturbance is not necessarily to be differentiable in the paper, but either unknown parameters or disturbance is considered but the other one is excluded in the related literature, or both of them are considered but the disturbance must be continuously differentiable. Moreover, the reference trajectories in the related literature must be at least twice continuously differentiable and themselves as well as their time derivatives must be known for feedback, which are generalized to a more broad class ones that are unknown and only one time continuously differentiable in the paper. To solve the control problem, a novel practical tracking control scheme is presented by using backstepping scheme and adaptive technique, and in turn to derive an adaptive state-feedback controller which guarantees that all the states of the resulting closed-loop system are bounded while the tracking error arrives at and then stay within an arbitrary neighborhood of the origin. Finally, simulation is provided to validate the effectiveness of the proposed theoretical results.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1642-1664 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
V. Feliu-Batlle ◽  
S. Hassan HosseinNia

SUMMARYThis paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Tiantian Yang ◽  
Zhiyuan Liu ◽  
Hong Chen ◽  
Run Pei

We consider the formation control problem of multiple wheeled mobile robots with parametric uncertainties and actuator saturations in the environment with obstacles. First, a nonconvex optimization problem is introduced to generate the collision-free trajectory. If the robots tracking along the reference trajectory find themselves moving close to the obstacles, a new collision-free trajectory is generated automatically by solving the optimization problem. Then, a distributed control scheme is proposed to keep the robots tracking the reference trajectory. For each interacting robot, optimal control problem is generated. And in the framework of LMI optimization, a distributed moving horizon control scheme is formulated as online solving each optimal control problem at each sampling time. Moreover, closed-loop properties inclusive of stability andH∞performance are discussed. Finally, simulation is performed to highlight the effectiveness of the proposed control law.


Author(s):  
Jingkang Xia ◽  
Deqing Huang ◽  
Yanan Li ◽  
Na Qin

Abstract A period-varying iterative learning control scheme is proposed for a robotic manipulator to learn a target trajectory that is planned by a human partner but unknown to the robot, which is a typical scenario in many applications. The proposed method updates the robot’s reference trajectory in an iterative manner to minimize the interaction force applied by the human. Although a repetitive human–robot collaboration task is considered, the task period is subject to uncertainty introduced by the human. To address this issue, a novel learning mechanism is proposed to achieve the control objective. Theoretical analysis is performed to prove the performance of the learning algorithm and robot controller. Selective simulations and experiments on a robotic arm are carried out to show the effectiveness of the proposed method in human–robot collaboration.


2018 ◽  
Vol 45 (3) ◽  
pp. 79-86 ◽  
Author(s):  
V.A. Zhorin ◽  
M.R. Kiselev

Mixtures of polyethylene and 80% germanium dioxide, magnesium, magnesium oxide, and sodium chloride were subjected to plastic deformation under a pressure of 0.5–4.0 GPa, and were then investigated by differential scanning calorimetry. The enthalpy of melting of the polymer in certain mixtures reached 300 J/g. On thermograms of deformed mixtures, exothermic processes were observed. The observed thermal effects are possibly due to interphase interaction at the phase boundary.


Sign in / Sign up

Export Citation Format

Share Document