scholarly journals Online Identification and Verification of the Elastic Coupling Torsional Stiffness

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wanyou Li ◽  
Zhuoye Chai ◽  
Mengqi Wang ◽  
Xinhuan Hu ◽  
Yibin Guo

To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

2019 ◽  
Vol 30 (15) ◽  
pp. 2212-2221 ◽  
Author(s):  
Kang-Hyun Lee ◽  
Jae-Eun Park ◽  
Young-Keun Kim

In this study, the design of an magnetorheological elastomer flexible coupling whose torsional stiffness can be controlled by an embedded magnetic field generator is proposed. It is designed to minimize the torsional vibration transmission between shafts adaptively to the dynamic disturbance. The coupling insert is composed of magnetorheological elastomer which is a smart material whose stiffness can be controlled by an external magnetic field. This article also proposes a compact magnetic field generator which can be fitted inside the coupling hubs, to control the torsional stiffness of the magnetorheological elastomer. The finite element method was used to design and estimate the dynamic stiffness variation of the magnetorheological elastomer coupling due to the applied magnetic field and disturbance frequency. Also, torsional vibration experiments were conducted to validate the performance of the proposed magnetorheological elastomer coupling. Results showed that it can adaptively tune in a range of frequencies between 16.8 and 23.5 Hz and has 95.7% stiffness variation under magnetic field of 150mT. The proposed system is expected to achieve a higher MRE effect with a softer base matrix.


2020 ◽  
Vol 14 ◽  
Author(s):  
Shuang Zhang ◽  
Yuping Qin ◽  
Jiang-ming Kuang ◽  
Jining Yang ◽  
Jin Xu ◽  
...  

: With the development of integrated circuits and microelectronics, integrated and miniaturized implantable medical devices are increasingly used in modern medical technologies, e.g., cardiac pacemakers, vasodilators, and cochlear implants. However, the normal operation of these devices is inseparable from the availability of a sufficient energy supply and the bidirectional transmission of internal and external signals. Due to the limitation of the working environment of sensors, there is only a small space for most implanted electronic devices, which is a challenge faced by existing technology. In this paper, current wireless implantable energy supply and communication technologies are reviewed to determine the best available technologies, thereby providing a reference for method selection in designing implantable medical systems.


2016 ◽  
Vol 24 (9) ◽  
pp. 1774-1786 ◽  
Author(s):  
Sérgio J Idehara ◽  
Fernando L Flach ◽  
Douglas Lemes

A vibration model of the powertrain can be used to predict its dynamic behavior when excited by fluctuations in the engine torque and speed. The torsional vibration resulting from torque and speed fluctuations increases the rattle noise in the gearbox and it should be controlled or minimized in order to gain acceptance by clients and manufactures. The fact that the proprieties of the torsional damper integrated into the clutch disc alter the dynamic characteristic of the system is important in the automotive industry for design purposes. In this study, bench test results for the characteristics of a torsional damper for a clutch system (torsional stiffness and friction moment) and powertrain torsional vibration measurements taken in a passenger car were used to verify and calibrate the model. The adjusted model estimates the driveline natural frequency and the time response vibration. The analysis uses order tracking signal processing to isolate the response from the engine excitation (second-order). It is shown that a decrease in the stiffness of the clutch disc torsional damper lowers the natural frequency and an increase in the friction moment reduces the peak amplitude of the gearbox torsional vibration. The formulation and model adjustment showed that a nonlinear model with three degrees of freedom can represent satisfactorily the powertrain dynamics of a front-wheel drive passenger car.


Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 31 ◽  
Author(s):  
Hans Meeus ◽  
Björn Verrelst ◽  
David Moens ◽  
Patrick Guillaume ◽  
Dirk Lefeber

Typical rotating machinery drive trains are prone to torsional vibrations. Especially those drive trains that comprise one or more couplings which connect the multiple shafts. Since these vibrations rarely produce noise or vibration of the stationary frame, their presence is hardly noticeable. Moreover, unless an expensive torsional-related problem has become obvious, such drive trains are not instrumented with torsional vibration measurement equipment. Excessive levels can easily cause damage or even complete failure of the machine. So, when designing or retrofitting a machine, a comprehensive and detailed numerical torsional vibration analysis is crucial to avoid such problems. However, to accurately calculate the torsional modes, one has to account for the penetration effect of the shaft in the coupling hub, indicated by the shaft penetration factor, on the torsional stiffness calculation. Many guidelines and assumptions have been published for the stiffness calculation, however, its effect on the damping and the dynamic amplification factor are less known. In this paper, the effect of the shaft penetration factor, and hence coupling hub-to-shaft connection, on the dynamic torsional response of the system is determined by an experimental study. More specifically, the damping is of major interest. Accordingly, a novel academic test setup is developed in which several configurations, with each a different shaft penetration factor, are considered. Besides, different amplitude levels, along with both a sweep up and down excitation, are used to identify their effect on the torsional response. The measurement results show a significant influence of the shaft penetration factor on the system’s first torsional mode. By increasing the shaft penetration factor, and thus decreasing the hub-to-shaft interference, a clear eigenfrequency drop along with an equally noticeable damping increase, is witnessed. On the contrary, the influence of the sweep up versus down excitation is less pronounced.


2014 ◽  
Vol 1070-1072 ◽  
pp. 779-784
Author(s):  
Dan Luo ◽  
Yi Xiao ◽  
Jie Na Zhou

Harmonic Analysis and control is very important for the power system because harmonics have serious harm to its normal operation. Harmonic Analysis uses fast Fourier transform (FFT) to solve this problem though it causes the spectrum leakage which Increases the calculation error. To solve this problem, the interpolation algorithm combine with tapered time windows are used. The tapered time windows solve the long-range leakage and the interpolation algorithm solves the problem of short-range leakage.


Author(s):  
Huageng Luo ◽  
Roengchai Chumai ◽  
Nicolas Peton ◽  
Brian Howard ◽  
Arun Menon

Torsional vibration excitation in rotating machinery can cause system reliability issues or even catastrophic failures. Torsional vibration detection and monitoring becomes an important step in rotating machinery condition monitoring, especially for those machines driven by a variable frequency drive (VFD), a pulse width modulation motor (PWM), or a synchronous motor (SM), etc. Traditionally, the torsional vibration is detected by a phase demodulation process applied to the signals generated by tooth wheels or optical encoders. This demodulation based method has a few unfavorable issues: the installation of the tooth wheels needs to interrupt the machinery normal operation; the installation of the optical barcode is relatively easier, however, it suffers from short term survivability in harsh industrial environments. The geometric irregularities in the tooth wheel and the end discontinuity in the optical encoder will sometimes introduce overwhelming contaminations from shaft order response and its harmonics. In addition, the Hilbert Transform based phase demodulation technique has inevitable errors caused by the edge effect in FFT and IFFT analyses. Fortunately, in many industrial rotating machinery applications, the torsional vibration resonant frequency is usually low and the Keyphasor® and/or encoder for speed monitoring is readily available. Thus, it is feasible to use existing hardware for torsional vibration detection. In this paper, we present a signal processing approach which used the Keyphasor/encoder data digitized by a high sampling rate and high digitization resolution analog-to-digital (A/D) convertor to evaluate the torsional vibration directly. A wavelet decomposition (WD) based method was used to separate the torsional vibration from the shaft speed, so that the time history of the torsional vibrations can be extracted without significant distortions. The developed approach was then validated through a synchronous motor fan drive and an industrial power generation system. Detailed results are presented and discussed in this paper.


2021 ◽  
Vol 64 (2) ◽  
pp. 365-376
Author(s):  
Da-Vin Ahn ◽  
In-Kyung Shin ◽  
Jooseon Oh ◽  
Woo-Jin Chung ◽  
Hyun-Woo Han ◽  
...  

HighlightsRattling of tractor power take-off drivelines can be detrimental to operators.A novel driveline model, which includes a torsional damper, was constructed.The behavior of the model was validated against that of an actual tractor driveline.The validated model was used to determine the optimal torsional damper parameters.These optimal parameters were validated by laboratory tests.Abstract. Rattle noise and high levels of vibration in agricultural tractors lower the productivity of the operators and may cause serious health issues in them. This study examined a method for preventing resonance and reducing the torsional vibration that causes rattling in tractor power take-off (PTO) drivelines in the idle state using a two-stage torsional damper. The PTO driveline was simplified to a 6-DOF model based on the principle of equivalent mass moment of inertia using commercial simulation software. The variations in the angular velocity of the PTO drive shaft in an actual tractor were measured and compared to the simulation results using a single-stage torsional damper to validate the model. Using this validated PTO driveline model, the pre spring of a two-stage torsional damper was investigated to determine its optimal torsional stiffness to minimize torsional vibration. The simulation results showed that the variations in the angular velocity of the PTO drive shaft decreased as the torsional stiffness of the pre spring decreased; accordingly, an appropriate torsional stiffness reduced the variation in the angular velocity delivered to the PTO drive shaft. The optimal torsional stiffness of the pre spring was determined by considering the manufacturing limitations of the torsional damper and the magnitude of the input engine torque. A pre spring with this optimal torsional stiffness was installed on an actual PTO driveline to measure the angular velocity transmissibility, which was the ratio of the variation in the angular velocity of the engine flywheel to the variation in the angular velocity of the PTO drive shaft, and the results were compared with those of the simulation. When the angular velocity of the engine was 850 rpm, the angular velocity transmissibility of the PTO drive shaft was 0.4 in the actual test, similar to the value of 0.29 obtained using the simulation. Thus, the simulation-optimized pre spring was able to avoid the resonance domain, while considerably reducing the torsional vibration that leads to rattling. The results of this study support the safe operation of agricultural tractors and guide the evaluation of torsional damper configurations of different vehicles. Keywords: PTO driveline, Resonance, Simulation model, Torsional damper, Torsional vibration, Tractor rattle.


2009 ◽  
Vol 419-420 ◽  
pp. 65-68
Author(s):  
Zheng Feng Jiang ◽  
Lei Chen

As a new type of torsional vibration damper, a Dual Mass Flywheel (DMF) has different configuration and working principle from the traditional clutch. Focusing on the problem of matching DMF with a diesel engine, the relationship of circumferential spring dual mass flywheel (CS-DMF) and gearbox is analyzed based on a multi-freedom model, and then the methods of gearbox selection, rotary inertia coefficient ascertain and optimization of torsional stiffness are proposed in this paper. The methods have been applied to a CS-DMF matching with a passenger car with diesel engine. Modal simulation and torque fluctuating experiment show the CS-DMF has excellent damping performance.


Author(s):  
Liu Jinfu ◽  
Liu Jiao ◽  
Wan Jie ◽  
Wang Zhongqi ◽  
Yu Daren

The working environment of hot components is the most adverse of all gas turbine components. Malfunction of hot components is often followed by catastrophic consequences. Early fault detection plays a significant role in detecting performance deterioration immediately and reducing unscheduled maintenance. In this paper, an early fault detection method is introduced to detect early fault symptoms of hot components in gas turbines. The exhaust gas temperature (EGT) is usually used to monitor the performance of the hot components. The EGT is measured by several thermocouples distributed equally at the outlet of the gas turbine. EGT profile is symmetrical when the unit is in normal operation. And the faults of hot components lead to large temperature differences between different thermocouple readings. However, interferences can potentially affect temperature differences, and sometimes, especially in the early stages of the fault, its influence can be even higher than that of the faults. To improve the detection sensitivity, the influence of interferences must be eliminated. The two main interferences investigated in this study are associated with the operating and ambient conditions, and the structure deviation of different combustion chambers caused by processing and installation errors. Based on the basic principles of gas turbines and Fisher discriminant analysis (FDA), a new detection indicator is presented that characterizes the intrinsic structure information of the hot components. Using this new indicator, the interferences involving the certainty and the uncertainty are suppressed and the sensitivity of early fault detection in gas turbine hot components is improved. The robustness and the sensitivity of the proposed method are verified by actual data from a Taurus 70 gas turbine produced by Solar Turbines.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Liupeng He ◽  
Changgao Xia ◽  
Sida Chen ◽  
Jiwei Guo ◽  
Yi Liu

This paper is aimed to investigate the influence of dual-mass flywheel (DMF) kinetic parameters on driveline torsional vibration in engine start-up process, which prescribes the design requirements under start-up condition for DMF matching. On the basis of driveline excitation analysis during engine start-up, the analytical model of DMF driveline torsional vibration system is built and simulated. The vehicle start-up test is conducted and compared with the simulation results. On account of the partial nonstationary characteristic of driveline during start-up, the start-up process is separated into 3 phases for discussing the influence of DMF rotary inertia ratio, hysteresis torque, and nonlinear torsional stiffness on attenuation effect. The test and simulation results show that the DMF undergoes severe oscillation when driveline passes through resonance zone, and the research model is verified to be valid. The DMF design requirements under start-up condition are obtained: the appropriate rotary inertia ratio (the 1st flywheel rotary inertia-to-the 2nd flywheel rotary inertia ratio) is 0.7∼1.1; the interval of DMF small torsion angle should be designed as being with small damping, while large damping is demanded in the interval of large torsion angle; DMF should be equipped with low torsional stiffness when working in start-up process.


Sign in / Sign up

Export Citation Format

Share Document