Early Fault Detection of Hot Components in Gas Turbines

Author(s):  
Liu Jinfu ◽  
Liu Jiao ◽  
Wan Jie ◽  
Wang Zhongqi ◽  
Yu Daren

The working environment of hot components is the most adverse of all gas turbine components. Malfunction of hot components is often followed by catastrophic consequences. Early fault detection plays a significant role in detecting performance deterioration immediately and reducing unscheduled maintenance. In this paper, an early fault detection method is introduced to detect early fault symptoms of hot components in gas turbines. The exhaust gas temperature (EGT) is usually used to monitor the performance of the hot components. The EGT is measured by several thermocouples distributed equally at the outlet of the gas turbine. EGT profile is symmetrical when the unit is in normal operation. And the faults of hot components lead to large temperature differences between different thermocouple readings. However, interferences can potentially affect temperature differences, and sometimes, especially in the early stages of the fault, its influence can be even higher than that of the faults. To improve the detection sensitivity, the influence of interferences must be eliminated. The two main interferences investigated in this study are associated with the operating and ambient conditions, and the structure deviation of different combustion chambers caused by processing and installation errors. Based on the basic principles of gas turbines and Fisher discriminant analysis (FDA), a new detection indicator is presented that characterizes the intrinsic structure information of the hot components. Using this new indicator, the interferences involving the certainty and the uncertainty are suppressed and the sensitivity of early fault detection in gas turbine hot components is improved. The robustness and the sensitivity of the proposed method are verified by actual data from a Taurus 70 gas turbine produced by Solar Turbines.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2149 ◽  
Author(s):  
Jiao Liu ◽  
Jinfu Liu ◽  
Daren Yu ◽  
Myeongsu Kang ◽  
Weizhong Yan ◽  
...  

Gas turbine hot component failures often cause catastrophic consequences. Fault detection can improve the availability and economy of hot components. The exhaust gas temperature (EGT) profile is usually used to monitor the performance of the hot components. The EGT profile is uniform when the hot component is healthy, whereas hot component faults lead to large temperature differences between different EGT values. The EGT profile swirl under different operating and ambient conditions also cause temperature differences. Therefore, the influence of EGT profile swirl on EGT values must be eliminated. To improve the detection sensitivity, this paper develops a fault detection method for hot components based on a convolutional neural network (CNN). This paper demonstrates that a CNN can extract the information between adjacent EGT values and consider the impact of the EGT profile swirl. This paper reveals, in principle, that a CNN is a viable solution for dealing with fault detection for hot components. Based on the distribution characteristics of EGT thermocouples, the circular padding method is developed in the CNN. The sensitivity of the developed method is verified by real-world data. Moreover, the developed method is visualized in detail. The visualization results reveal that the CNN effectively considers the influence of the EGT profile swirl.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5950
Author(s):  
Jinfu Liu ◽  
Mingliang Bai ◽  
Zhenhua Long ◽  
Jiao Liu ◽  
Yujia Ma ◽  
...  

Failures of the gas turbine hot components often cause catastrophic consequences. Early fault detection can detect the sign of fault occurrence at an early stage, improve availability and prevent serious incidents of the plant. Monitoring the variation of exhaust gas temperature (EGT) is an effective early fault detection method. Thus, a new gas turbine hot components early fault detection method is developed in this paper. By introducing a priori knowledge and quantum particle swarm optimization (QPSO), the exhaust gas temperature profile continuous distribution model is established with finite EGT measuring data. The method eliminates influences of operating and ambient condition changes and especially the gas swirl effect. The experiment reveals the presented method has higher fault detection sensitivity.


Author(s):  
Jiao Liu ◽  
Jinfu Liu ◽  
Daren Yu ◽  
Zhongqi Wang ◽  
Weizhong Yan ◽  
...  

Failure of hot components in gas turbines often causes catastrophic results. Early fault detection can prevent serious incidents and improve the availability. A novel early fault detection method of hot components is proposed in this article. Exhaust gas temperature is usually used as the indicator to detect the fault in the hot components, which is measured by several exhaust thermocouples with uniform distribution at the turbine exhaust section. The healthy hot components cause uniform exhaust gas temperature (EGT) profile, whereas the hot component faults could cause the uneven EGT profile. However, the temperature differences between different thermocouple readings are also affected by different ambient and operating conditions, and it sometimes has a greater influence on EGT than the faults. In this article, an accurate EGT model is presented to eliminate the influence of different ambient and operating conditions on EGT. Especially, the EGT profile swirl under different ambient and operating conditions is also included by considering the information of the thermocouples’ spatial correlations and the EGT profile swirl angle. Based on the developed EGT model, the detection performance of early fault detection of hot components in gas turbine is improved. The accuracy and effectiveness of the developed early fault detection method are evaluated by the real-world gas turbine data.


Author(s):  
Hafiz M Hassan ◽  
Adeel Javed ◽  
Asif H Khoja ◽  
Majid Ali ◽  
Muhammad B Sajid

A clear understanding of the flow characteristics in the older generation of industrial gas turbines operating with silo combustors is important for potential upgrades. Non-uniformities in the form of circumferential and radial variations in internal flow properties can have a significant impact on the gas turbine stage performance and durability. This paper presents a comprehensive study of the underlying internal flow features involved in the advent of non-uniformities from twin-silo combustors and their propagation through a single axial turbine stage of the Siemens v94.2 industrial gas turbine. Results indicate the formation of strong vortical structures alongside large temperature, pressure, velocity, and flow angle deviations that are mostly located in the top and bottom sections of the turbine stage caused by the excessive flow turning in the upstream tandem silo combustors. A favorable validation of the simulated exhaust gas temperature (EGT) profile is also achieved via comparison with the measured data. A drop in isentropic efficiency and power output equivalent to 2.28% points and 2.1 MW, respectively is observed at baseload compared to an ideal straight hot gas path reference case. Furthermore, the analysis of internal flow topography identifies the underperforming turbine blading due to the upstream non-uniformities. The findings not only have implications for the turbine aerothermodynamic design, but also the combustor layout from a repowering perspective.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


Author(s):  
Stefano Tiribuzi

ENEL operates a dozen combined cycle units whose V94.3A gas turbines are equipped with annular combustors. In such lean premixed gas turbines, particular operation conditions could trigger large pressure oscillations due to thermoacoustic instabilities. The ENEL Research unit is studying this phenomenon in order to find out methods which could avoid or mitigate such events. The use of effective numerical analysis techniques allowed us to investigate the realistic time evolution and behaviour of the acoustic fields associated with this phenomenon. KIEN, an in-house low diffusive URANS code capable of simulating 3D reactive flows, has been used in the Very Rough Grid approach. This approach permits the simulation, with a reasonable computational time, of quite long real transients with a computational domain extended over all the resonant volumes involved in the acoustic phenomenon. The V94.3A gas turbine model was set up with a full combustor 3D grid, going from the compressor outlet up to the turbine inlet, including both the annular plenum and the annular combustion chamber. The grid extends over the entire circular angle, including all the 24 premixed burners. Numerical runs were performed with the normal V94.3A combustor configuration, with input parameters set so as no oscillations develop in the standard ambient conditions. Wide pressure oscillations on the contrary are associated with the circumferential acoustic modes of the combustor, which have their onset and grow when winter ambient conditions are assumed. These results also confirmed that the sustaining mechanism is based on the equivalence ratio fluctuation of premix mixture and that plenum plays an important role in such mechanism. Based on these findings, a system for controlling the thermoacoustic oscillation has been conceived (Patent Pending), which acts on the plenum side of the combustor. This system, called SCAP (Segmentation of Combustor Annular Plenum), is based on the subdivision of the plenum annular volume by means of a few meridionally oriented walls. Repetition of KIEN runs with a SCAP configuration, in which a suitable number of segmentation walls were properly arranged in the annular plenum, demonstrated the effectiveness of this solution in preventing the development of wide thermoacoustic oscillations in the combustor.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Stefano Gori ◽  
Luca Bozzi ◽  
Stefano Traverso

This paper reviews a modular-structured program ESMS (Energy System Modular Simulation) for the simulation of air-cooled gas turbines cycles, including the calculation of the secondary air system. The program has been tested for the Ansaldo Energia gas turbine V94.3A, which is one of the more advanced models in the family Vx4.3A with a rated power of 270 MW. V94.3A cooling system has been modeled with SASAC (Secondary Air System Ansaldo Code), the Ansaldo code used to predict the structure of the flow through the internal air system. The objective of the work was to investigate the tuning of the analytical program on the basis of the data from design and performance codes in use at Ansaldo Energy Gas Turbine Department. The results, both at base load over different ambient conditions and in critical off-design operating points (full-speed-no-load and minimum-load), have been compared with APC (Ansaldo Performance Code) and confirmed by field data. The coupled analysis of cycle and cooling network shows interesting evaluations for components life estimation and reliability during off-design operating conditions.


Author(s):  
Martin Zajadatz ◽  
Douglas Pennell ◽  
Stefano Bernero ◽  
Bettina Paikert ◽  
Raffaele Zoli ◽  
...  

Increasing public awareness and more stringent legislation on pollutants drive gas turbine manufacturers to develop combustion systems with low NOx emissions. In combination to this demand the gas turbines have to provide a broad range of operational flexibility to cover variations in gas composition and ambient conditions as well as varying daily and seasonal energy demands and load profiles. This paper describes the development and implementation of the Alstom AEV (Advanced EnVironmental) burner, an evolution of the EV. Continuous fuel supply to two fuel stages at any engine load simplifies the operation and provides a fast and reliable response of the combustion system during transient operation of the gas turbine. Increased turndown with low emissions is an additional advantage of the combustion system upgrade.


2019 ◽  
Author(s):  
Hossein Rabiei ◽  
Nima Zamani Meymian

Implementing control logic in dynamic modeling of gas turbines is one of the important and effective methods in analyzing the performance of IGT25 gas turbine; because, in dynamic modeling, various results would be achieved, through different control philosophies. To do so, using behavioral analysis of the performance of IGT25 gas turbine under different ambient conditions and different fuel compositions, appropriate control logic could be extracted. In the paper, method of extraction and entering the control logic in modeling dynamic condition of IGT25 gas turbine coupled with a 25MW consumer has been studied under different ambient conditions such as various ambient temperature and pressure, relative humidity, and fuel compositions. Primarily, various scenarios existing in relation to gas turbine control have been studied; then, studying the dynamic behavior of IGT25 gas turbine under the aforementioned condition, considered control logic has been reviewed. Data obtained are at the nominal load and the condition in which the turbine’s temperature controller has been set to higher temperatures so that the maximum output load is achieved for the consumer.


Author(s):  
D. Little ◽  
H. Nikkels ◽  
P. Smithson

For a medium sized (300 MW) utility producing electricity from a 130 MW combined cycle, and supplemental 15 MW to 77 MW capacity simple cycle gas turbines, the incremental fuel costs accompanying changes in generating capacity vary considerably with unit, health, load level, and ambient. To enable incremental power to be sold to neighbouring utilities on an incremental fuel cost basis, accurate models of all gas turbines and the combined cycle were developed which would allow a realistic calculation of fuel consumption under all operating conditions. The fuel cost prediction program is in two parts; in the first part, gas turbine health is diagnosed from measured parameters; in the second part, fuel consumption is calculated from compressor and turbine health, ambient conditions and power levels. The paper describes the program philosophy, development, and initial operating experience.


Sign in / Sign up

Export Citation Format

Share Document