scholarly journals α-Amylase andα-Glucosidase Inhibitory Saponins fromPolyscias fruticosaLeaves

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Tran Thi Hong Hanh ◽  
Nguyen Hai Dang ◽  
Nguyen Tien Dat

Three bisdesmosidic saponins 3-O-[β-D-glucopyranosyl-(1→4)-β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester (1), polyscioside D (2), and 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-glucuronopyranosyl}oleanolic acid 28-O-β-D-glucopyranosyl-(1→2)-β-D-galactopyranosyl ester (3) were isolated from a methanol extract ofPolyscias fruticosa(L.) Harms leaves. Compound1was obtained as a main constituent and compound3was reported for the first time and named as polyscioside I. Saponin1inhibited porcine pancreasα-amylase and yeastα-glucosidase activities while2and3were inactive. Synergistic inhibitory effect onα-amylase was observed from the combination of low concentrations of1and acarbose. The findings suggest the use ofP. fruticosaand its major saponin1for the prevention and treatment of diabetes and its complications.

PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wen Bao ◽  
Rui Kong ◽  
Nan Wang ◽  
Wei Han ◽  
Jie Lu

At present, there are more and more patients with acute hypertriglyceridemia pancreatitis in clinical practice. Common treatment measures include fasting and water withdrawal, fluid resuscitation, and somatostatin. In recent years, studies have pointed out that the PPARa agonist fenofibrate may help improve the condition of such patients. Therefore, through clinical research and analysis, we reported for the first time that fenofibrate combined with octreotide acetate has a more excellent effect in the treatment of patients with acute hypertriglyceridemia pancreatitis, and from the perspective of signal pathways, we revealed that the combination of the two drugs has an effect on NF-κB P65. The synergistic inhibitory effect proves that the combined treatment is beneficial to control inflammation, protect liver function, and improve the prognosis of patients. It is worthy of clinical promotion.


2020 ◽  
Vol 27 (4) ◽  
pp. 266
Author(s):  
Sri Handayani ◽  
Ratna Asmah Susidarti ◽  
Puspa Dewi Narrij Lotulung ◽  
Akhmad Darmawan ◽  
Edy Meiyanto ◽  
...  

Caesalpinia sappan is studied for several biological activities. The aim of this research is to determine the cytotoxic and antimigratory activities of Caesalpinia sappan active fraction in combination with cisplatin on human TNBC cells (MDA-MB-231). Caesalpinia sappan heartwood was extracted with methanol. Then, several fractions of the methanol extract were obtained by using a liquid-liquid extraction method followed by column chromatography. The cytotoxicity was determined using MTT assay. Synergistic effects were analyzed by calculating the combination index (CI). Migration was examined using wound-healing assay. Levels of MMP2 activity were determined with gelatin zymography assay. The results showed that most of the fractions included in this study exhibited cytotoxic effects against MDA-MB-231 cells, and C fraction demonstrated the highest cytotoxic activity of all fractions. The combination of C-cisplatin revealed a synergistic inhibitory effect on MDA-MB-231 cell growth (CI<1). Furthermore, C fraction, alone and in combination with cisplatin, inhibited migration of MDA-MB-231 and suppressed MMP2 activity. The C fraction isolated from Caesalpinia sappan increased the cytotoxic and antimigratory activities of cisplatin on MDA-MB-231 cells. Based on these findings, the potential of Caesalpinia sappan to act as a supportive agent in metastatic TNBC treatment with cisplatin warrants further exploration.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Hassan Javid ◽  
Soheila Moein ◽  
Mahmood Reza Moein

Background: Diabetes mellitus is believed to be the most serious metabolic disease. One of the treatments for diabetes is to delay glucose uptake by inhibiting carbohydrate-hydrolyzing enzymes. Alpha-glucosidase inhibitors delay glucose uptake. Objectives: The present study was conducted aiming to evaluate the efficacy of Salvia extracts in inhibiting diabetes marker enzymes and their effects on the treatment of diabetes. Methods: This experimental study was performed in vitro. The studied plants included Salvia macilenta and Salvia officinalis. The inhibitory effects of their dichloromethane and methanol extracts were also investigated. After calculating the percentage of inhibition and IC50, Km and Vmax using GraphPad Prism 7 were also calculated. The statistical analysis was performed employing GraphPad Instat 3 software. Results: The results herein showed that the greatest inhibitory effect on alpha-glucosidase belonged to the methanol extract of S. macilenta with IC50 = 8.73 ± 0.26 mg/mL compared to that of acarbose with IC50 = 8.82 ± 0.14 mg/mL as a standard. The IC50 of dichloromethane extract of S. officinalis was 8.95 ± 0.23 mg/mL. Conclusions: The extracts had significant inhibitory effects on alpha-glucosidase. However, methanol extract of S. macilenta and dichloromethane extract of S. officinalis demonstrated the greatest inhibitory effects on alpha-glucosidase compared to acarbose as a standard.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


2013 ◽  
pp. 50-55
Author(s):  
Tuyet Mai Truong ◽  
Thi Lam Nguyen ◽  
Lan Anh Pham ◽  
Hoang Kien Truong

Objective: Plant polyphenols have antioxidant capacity and alpha-glucosidase inhibition to supporting for prevention and treatment of diabetes. Materials and Method: Present study was conducted to determine the content of total polyphenols, free radical scavenging and alpha-glucosidase inhibition of the VOS mixture that extracted from leaves (Voi leaves - Cleistocalyx operculatus (V), Oi leaves - Psidium guajava (O), Sen leaves - Nelumbo nucifera (S)). Results: The efficacy of blood glucose controlling in diabetic mice was investigated. After 8 weeks of administration with 200 mg VOS/kg body weight and 400 mg VOS/kg body weight, VOS diabetic mice had significantly reduced blood glucose level as compared to control diabetic mice. VOS diabetic mice with 400 mg dosage are lower in blood glucose levels than that of the diabetic mice with 200 mg. Also, the significant reducing in HbA1c was observed in VOS diabetic mice as compared with control diabetic mice. Conclusion: VOS-product extracted from Cleistocalyx operculatus leaves, guava leaves, lotus leaves might be considered as a safe product and to be a potential product in the supporting of prevention and treatment of diabetes.


2019 ◽  
Vol 18 (10) ◽  
pp. 1405-1416 ◽  
Author(s):  
Isabel C.V. da Silva ◽  
Goran N. Kaluđerović ◽  
Pollyana F. de Oliveira ◽  
Denise O. Guimarães ◽  
Carla H. Quaresma ◽  
...  

Background: P. mucronata (Pm) comes from South America, Brazil and is characterized as “Maracujá de Restinga”. It is used in folk medicine for its soothing properties and in treating insomnia. Objective: The present study for the first time analyzed the antioxidant and cytotoxicity of the hydroalcoholic leaves extract and fractions from Pm. Method: The cytotoxicity test will be evaluated by different assays (MTT and CV) against human prostate cancer (PC3) and mouse malignant melanoma (B16F10) cell lines, and the antioxidant test by DPPH method. Results: β-Amyrin, oleanolic acid, β-sitosterol and stigmasterol were isolated of the most active, hexane fraction. These substances were tested against the tumor cell lines: β-sitosterol and stigmasterol showed the most relevant activity to PC3 in CV assay and, oleanolic acid to B16F10 by the MTT assay. In addition, it was possible to indicate that the mode of cell death for stigmasterol, presumably is apoptosis. In terms of antioxidant activity, the hydroalcoholic leaves extract presented higher activity (EC50 133.3 µg/mL) compared to the flower (EC50 152.3 µg/mL) and fruit (EC50 207.9 µg/mL) extracts. By the HPLC-MS, it was possible to identify the presence of flavones in the leaf extract (isoschaftoside, schaftoside, isovitexin, vitexin, isoorientin, orientin). Conclusions: P. mucronata hexane fraction showed promising cytotoxic effect against cancer cell lines, and stigmasterol contributes to this activity, inducing apoptosis of these cells. Furthermore, as other Passiflora species, Pm extract showed antioxidant activity and flavones are its major phenolic compounds.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


2015 ◽  
Vol 26 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Meredith O. Sweeney ◽  
Agnieszka Collins ◽  
Shae B. Padrick ◽  
Bruce L. Goode

Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1's inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2.


1989 ◽  
Vol 262 (1) ◽  
pp. 83-89 ◽  
Author(s):  
K J Föhr ◽  
J Scott ◽  
G Ahnert-Hilger ◽  
M Gratzl

The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.


Sign in / Sign up

Export Citation Format

Share Document