scholarly journals The Synchrotron Radiation for Steel Research

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Piyada Suwanpinij

The synchrotron X-ray radiation is a great tool in materials characterization with several advantageous features. The high intensity allows clear interaction signals and high energy of X-ray yields higher sampling volume. The samples do not need extra preparation and the microstructure is therefore not affected. With the tunability of the X-ray energy, a large range of elements and features in the samples can be investigated by different techniques, which is a significant difference between a stand-alone X-ray tube and synchrotron X-ray. Moreover, any experimental equipment can be installed through which the synchrotron beam travels. This facilitates the so-called in situ characterization such as during heat treatment, hot deformation, chemical reaction or welding. Although steel which possesses rather high density requires very high energy X-ray for large interaction volume, lower energy is still effective for the investigation of local structure of nanoconstituents. This work picks up a couple examples employing synchrotron X-ray for the characterization of high strength steels. The first case is the quantification of precipitates in high strength low alloyed (HSLA) steel by X-ray absorption spectroscopy. The other case is the in situ X-ray diffraction for phase fraction and carbon partitioning in multiphase steels such as transformation induced plasticity (TRIP) steel.

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1335
Author(s):  
Mathias Lamari ◽  
Sébastien Y. P. Allain ◽  
Guillaume Geandier ◽  
Jean-Christophe Hell ◽  
Astrid Perlade ◽  
...  

Duplex medium Mn steels are high-potential advanced high-strength steels (AHSS) for automotive construction. Their excellent forming properties stem from the specific stress partitioning between their constituting phases during deformation, namely the ferritic matrix, unstable retained austenite, and strain-induced fresh martensite. The stability of the retained austenite and the 3D stress tensors of each phase are determined simultaneously in this work by in situ high energy X-ray diffraction on synchrotron beamline during a tensile test. The role of internal stresses inherited from the manufacturing stage are highlighted for the first time as well as new insights to understand the origin of the serrations shown by these alloys.


2001 ◽  
Vol 79 (1) ◽  
pp. 27-29 ◽  
Author(s):  
V. Rossi Albertini ◽  
P. Perfetti ◽  
F. Ronci ◽  
P. Reale ◽  
B. Scrosati

2016 ◽  
Vol 23 (2) ◽  
pp. 617-621 ◽  
Author(s):  
Hiroshi Sakurai ◽  
Nobuyuki Kawahara ◽  
Masayoshi Itou ◽  
Eiji Tomita ◽  
Kosuke Suzuki ◽  
...  

Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as anin situtechnique to probe inside a combustion reaction.


2011 ◽  
Vol 409 ◽  
pp. 660-665 ◽  
Author(s):  
Dagmar Carmele ◽  
Thomas Rieger ◽  
Klaus Herrmann ◽  
Stephan Meyer ◽  
Thomas Lippmann ◽  
...  

Innovative steel materials of the third generation of advanced high-strength steel (AHSS) are based on complex multiphase microstructures on a submicron scale, which are adjusted in a heat treatment procedure. Established methods for microstructural characterization are usually applied after the heat treatment process (ex-situ) at room temperature and comprise amongst others X-ray analysis based on laboratory tubes with photon energies of several keV. The corresponding penetration depths are on the micron scale. Additionally, the results may be affected by the metallographic preparation process. Using very hard synchrotron X-ray radiation with photon energies of up to 100 keV, penetration depths in the millimetre range are realized and macroscopic volumes (mm³) can be investigated. Furthermore the photon flux of synchrotron sources is several orders of magnitude higher compared to laboratory tubes. Consequently in-situ measurements during a heat treatment process can be performed. Using the example of the standardized multiphase TRIP steel HCT690T, a microstructural investigation with high energy synchrotron X-ray radiation is discussed and compared to established diffraction methods using Co-and Cu-Kα-radiation. In-situ diffraction measurements during a heat treatment are exemplarily shown.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document