scholarly journals Design and Optimisation of a Simple Filter Group for Reactive Power Distribution

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Ryszard Klempka

Basic methods are presented to design a simple filter group and a method of shaping the resultant of the filter group’s impedance characteristics (distribution of the characteristics’ extremes) and then project equations were transformed into a uniform, common form that addresses issues of the reactive power distribution between component filters. The analysis also takes into account the filters’ detuning from the reduced harmonics and quality factors of passive elements. Another important factor of the analysis considered was the power grid equivalent impedance affecting the filtration effectiveness. A criterion for the filter group’s filtration effectiveness evaluation was proposed and optimisation was completed for the reactive power distribution between separate filters in the function of the power grid’s equivalent inductance.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2798
Author(s):  
Soi Jeon ◽  
Dae-Hyun Choi

A high charging demand from many electric vehicles (EVs) at a fixed charging station (FCS) with a limited number of charging poles can increase the waiting time of EVs and yield an abnormal power grid condition. To resolve these challenges, this paper presents an optimization framework in which a mobile charging station (MCS) is dispatched to the overloaded FCS to reduce the number of waiting EVs while maintaining normal power grid operation. Compared to existing MCS scheduling methods that do not consider actual power distribution system operations, the proposed framework takes into account the (i) active/reactive power flow and consumption of EVs, (ii) reactive power capability of MCS, and (iii) voltage quality in power distribution systems. In coupled transportation and power distribution systems, the proposed algorithm conducts optimal operation scheduling of MCS for both road routing and charging and discharging, thereby leading to the reduction of waiting EVs within the allowable voltage range. The proposed MCS optimization algorithm was tested in IEEE 13-bus and 33-bus distribution systems coupled with 9-node and 15-node transportation systems, respectively. The test results demonstrate the effectiveness of the proposed algorithm in terms of number of waiting EVs, voltage magnitude deviation, and reactive power of the MCS.


Author(s):  
Yu. F. Yu. F. Romaniuk ◽  
О. V. Solomchak ◽  
М. V. Hlozhyk

The issues of increasing the efficiency of electricity transmission to consumers with different nature of their load are considered. The dependence of the efficiency of the electric network of the oil field, consisting of a power line and a step-down transformer, on the total load power at various ratios between the active and reactive components of the power is analyzed, and the conditions under which the maximum transmission efficiency can be ensured are determined. It is shown by examples that the power transmission efficiency depends not only on the active load, but also largely on its reactive load. In the presence of a constant reactive load and an increase in active load, the total power increases and the power transmission efficiency decreases. In the low-load mode, the schedule for changing the power transmission efficiency approaches a parabolic form, since the influence of the active load on the amount of active power loss decreases, and their value will mainly depend on reactive load, which remains unchanged. The efficiency reaches its maximum value provided that the active and reactive components of the power are equal. In the case of a different ratio between them, the efficiency decreases. With a simultaneous increase in active and reactive loads and a constant value of the power factor, the power transmission efficiency is significantly reduced due to an increase in losses. With a constant active load and an increase in reactive load, efficiency of power transmission decreases, since with an increase in reactive load, losses of active power increase, while the active power remains unchanged. The second condition, under which the line efficiency will be maximum, is full compensation of reactive power.  Therefore, in order to increase the efficiency of power transmission, it is necessary to compensate for the reactive load, which can reduce the loss of electricity and the cost of its payment and improve the quality of electricity. Other methods are also proposed to increase the efficiency of power transmission by regulating the voltage level in the power center, reducing the equivalent resistance of the line wires, optimizing the loading of the transformers of the step-down substations and ensuring the economic modes of their operation.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Nasser Hosseinzadeh ◽  
Asma Aziz ◽  
Apel Mahmud ◽  
Ameen Gargoom ◽  
Mahbub Rabbani

The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 593
Author(s):  
Moiz Muhammad ◽  
Holger Behrends ◽  
Stefan Geißendörfer ◽  
Karsten von Maydell ◽  
Carsten Agert

With increasing changes in the contemporary energy system, it becomes essential to test the autonomous control strategies for distributed energy resources in a controlled environment to investigate power grid stability. Power hardware-in-the-loop (PHIL) concept is an efficient approach for such evaluations in which a virtually simulated power grid is interfaced to a real hardware device. This strongly coupled software-hardware system introduces obstacles that need attention for smooth operation of the laboratory setup to validate robust control algorithms for decentralized grids. This paper presents a novel methodology and its implementation to develop a test-bench for a real-time PHIL simulation of a typical power distribution grid to study the dynamic behavior of the real power components in connection with the simulated grid. The application of hybrid simulation in a single software environment is realized to model the power grid which obviates the need to simulate the complete grid with a lower discretized sample-time. As an outcome, an environment is established interconnecting the virtual model to the real-world devices. The inaccuracies linked to the power components are examined at length and consequently a suitable compensation strategy is devised to improve the performance of the hardware under test (HUT). Finally, the compensation strategy is also validated through a simulation scenario.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


2013 ◽  
Vol 676 ◽  
pp. 204-208 ◽  
Author(s):  
Yue Qiang Zhang ◽  
Yong Qiang Zhu ◽  
Yan Zhang Liu

In order to study the power distribution strategy of AC and VSC-HVDC hybrid system for wind power integration, a strategy based on improving the transmission capacity of AC lines and reducing the power loss is proposed. By use of the decouple control of active and reactive power of the VSC-HVDC, the transmission capacity of the AC lines can be improved by absorbing enough reactive power, AC lines have the priority before they have reached their transmission limit, meanwhile the VSC-HVDC acts as STATCOM. When the AC lines have been fully used, the VSC-HVDC will act as STATCOM as well as transmit the rest power. A DFIG wind power integration system is set up by use of PSCAD/EMTDC, the simulation results show that the power distribution strategy can realize the wind power integration successfully and reduce the power loss, it can regard as a good method for wind power integration.


Sign in / Sign up

Export Citation Format

Share Document