scholarly journals Weaning Induced Hepatic Oxidative Stress, Apoptosis, and Aminotransferases through MAPK Signaling Pathways in Piglets

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Luo ◽  
Wei Zhu ◽  
Qi Guo ◽  
Wenli Luo ◽  
Jing Zhang ◽  
...  

This study investigated the effects of weaning on the hepatic redox status, apoptosis, function, and the mitogen-activated protein kinase (MAPK) signaling pathways during the first week after weaning in piglets. A total of 12 litters of piglets were weaned at d 21 and divided into the weaning group (WG) and the control group (CG). Six piglets from each group were slaughtered at d 0 (d 20, referred to weaning), d 1, d 4, and d 7 after weaning. Results showed that weaning significantly increased the concentrations of hepatic free radicals H2O2and NO, malondialdehyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OHdG), while significantly decreasing the inhibitory hydroxyl ability (IHA) and glutathione peroxidase (GSH-Px), and altered the level of superoxide dismutase (SOD). The apoptosis results showed that weaning increased the concentrations of caspase-3, caspase-8, caspase-9 and the ratio of Bax/Bcl-2. In addition, aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT) in liver homogenates increased after weaning. The phosphorylated JNK and ERK1/2 increased, while the activated p38 initially decreased and then increased. Our results suggested that weaning increased the hepatic oxidative stress and aminotransferases and initiated apoptosis, which may be related to the activated MAPK pathways in postweaning piglets.

2020 ◽  
Vol 21 (7) ◽  
pp. 2346 ◽  
Author(s):  
Jicheng Yue ◽  
José M. López

MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.


2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Xiao Li ◽  
Han Ye ◽  
Chao-Qun Xu ◽  
Xiang-ling Shen ◽  
Xiao-Long Zhang ◽  
...  

Abstract Yeast autolysis refers to the process in which cells degrade and release intracellular contents under specific conditions by endogenous enzymes such as proteases, nucleases and lipid enzymes. Protein-rich baker's yeast is widely used to produce yeast extract in food industry, however, the molecular mechanism related to baker's yeast autolysis is still unclear. In this study, RNA-seq technology and biochemical analysis were performed to analyze the autolysis processes in baker's yeast. The differentially expressed genes (DEGs), 27 autolysis-related euKaryotic Ortholog Groups (KOG) and three types of autolysis-induced Gene Ontology (GO) were identified and analyzed in detail. A total of 143 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways under autolysis were also assigned. Interestingly, the DEGs were significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathways and metabolic pathways, and key genes MID2, MTL1, SLT2, PTP2, HKR1 and GPD1 may play important roles in autolysis. Further quantitative PCR was performed to verify the expression pattern in baker's yeast autolysis. Together, all these results indicated that MAPK pathways might play an essential role during autolysis process through inhibiting the metabolism and disrupting cell wall in baker's yeast. This result may provide important clues for the in-depth interpretation of the yeast autolysis mechanism.


2016 ◽  
Vol 90 (21) ◽  
pp. 9743-9757 ◽  
Author(s):  
Finny S. Varghese ◽  
Bastian Thaa ◽  
Siti Naqiah Amrun ◽  
Diane Simarmata ◽  
Kai Rausalu ◽  
...  

ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH 2 -terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase signaling. The relevance of these signaling cascades in the viral life cycle was emphasized by specific inhibitors of these kinase pathways, which decreased the production of progeny virions. Berberine significantly reduced CHIKV-induced inflammatory disease in a mouse model, demonstrating efficacy of the drug in vivo . Overall, this work makes a strong case for pursuing berberine as a potential anti-CHIKV therapeutic compound and for exploring the MAPK signaling pathways as antiviral targets against alphavirus infections.


2013 ◽  
Vol 91 (4) ◽  
pp. 268-274 ◽  
Author(s):  
Deborah N. Chadee

Mitogen-activated protein kinase (MAPK) signaling pathways are composed of a phosphorelay signaling module where an activated MAP kinase kinase kinase (MAP3K) phosphorylates and activates a MAPK kinase (MAP2K) that in turn phosphorylates and activates a MAPK. The biological outcome of MAPK signaling is the regulation of cellular responses such as proliferation, differentiation, migration, and apoptosis. The MAP3K mixed lineage kinase 3 (MLK3) phosphorylates MAP2Ks to activate multiple MAPK signaling pathways, and MLK3 also has functions in cell signaling that are independent of its kinase activity. The recent elucidation of essential functions for MLK3 in tumour cell proliferation, migration, and invasion has drawn attention to the MLKs as potential therapeutic targets for cancer treatments. The mounting evidence that suggests a role for MLK3 in tumourigenesis and establishment of the malignant phenotype is the focus of this review.


2020 ◽  
Author(s):  
Sarmina Dangol ◽  
Raksha Singh ◽  
Khoa Nam Nguyen ◽  
Yafei Chen ◽  
Juan Wang ◽  
...  

ABSTRACTMitogen-activated protein kinase (MAPK) signaling is required for plant cell death responses to invading microbial pathogens. Ferric ions and reactive oxygen species (ROS) accumulate in rice (Oryza sativa) tissues undergoing cell death during Magnaporthe oryzae infection. Here, we report that rice MAP kinase (OsMEK2 and OsMPK1) signaling cascades are involved in iron- and ROS-dependent ferroptotic cell death responses of rice to M. oryzae infection. OsMEK2 interacted with OsMPK1 in the cytoplasm, and OsMPK1 moved from the cytoplasm into the nucleus to bind to the OsWRKY90 transcription factor. OsMEK2 expression may trigger OsMPK1-OsWRKY90 signaling pathways in the nucleus. Avirulent M. oryzae infection in ΔOsmek2 mutant rice did not trigger iron and ROS accumulation and lipid peroxidation, and also downregulated OsMPK1, OsWRKY90, OsRbohB, and OsPR-1b expression. However, OsMEK2 overexpression induced ROS-and iron-dependent cell death in rice during M. oryzae infection. The downstream MAP kinase (OsMPK1) overexpression induced ROS- and iron-dependent ferroptotic cell death in the compatible rice-M. oryzae interaction. These data suggest that the OsMEK2-OsMPK1-OsWRKY90 signaling cascade is involved in the ferroptotic cell death in rice. The small-molecule inducer erastin triggered iron- and lipid ROS-dependent, but OsMEK2-independent, ferroptotic cell death in ΔOsmek2 mutant plants during M. oryzae infection. Disease-related cell death was lipid ROS-dependent and iron-independent in the ΔOsmek2 mutant plants. These combined results suggest that OsMEK2 and OsMPK1 expression positively regulates iron- and ROS-dependent ferroptotic cell death via OsMEK2-OsMPK1-OsWRKY90 signaling pathways, and blast disease (susceptibility)-related cell death was ROS-dependent but iron-independent in rice-M. oryzae interactions.


Sign in / Sign up

Export Citation Format

Share Document