scholarly journals Fermented Herbal Formulas KIOM-MA128 Ameliorate IL-6-Induced Intestinal Barrier Dysfunction in Colon Cancer Cell Line

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Kwang Il Park ◽  
Dong Gun Kim ◽  
Bo Hyoung Lee ◽  
Jin Yeul Ma

Inflammatory bowel disease (IBD) comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBD increases the risk of colorectal cancer (CRC), depending on the extent and duration of intestinal inflammation. Increased IL-6 expression has been reported in IBD patients, which may be associated with intestinal barrier function through discontinuous tight junction (TJ). KIOM-MA is a specific agent for allergic diseases and cancer, and it is composed of several plants; these herbs have been used in traditional oriental medicine. We fermented KIOM-MA, the product of KIOM-MA128, using probiotics to improve the therapeutic efficacy via the absorption and bioavailability of the active ingredients. In this study, we demonstrated that KIOM-MA/MA128 exhibited anticolitis effects via the modulation of TJ protein. Interleukin-6 resulted in a dose-dependent decrease in the TER and an increase in the FITC-dextran permeability; however, pretreatment with 400 µg/ml KIOM-MA/MA128 resulted in a significant increase in the TER and a decrease in the FITC-dextran permeability via IL-6 induction. Furthermore, protein and mRNA TJ levels remained stable after pretreatment with 400 µg/ml KIOM-MA/MA128. Moreover, KIOM-MA/MA128 suppressed the expression of PLCγ1 and PKC. Taken together, these findings suggest novel information and clue of the anticolitis effects of KIOM-MA128 via regulation of tight junction.

2019 ◽  
Vol 5 ◽  
pp. 18-30 ◽  
Author(s):  
Jonathan C. Valdez ◽  
Bradley W. Bolling

Chronic intestinal inflammation, occurring in inflammatory bowel diseases (IBD), is associated with compromised intestinal barrier function. Inflammatory cytokines disrupt tight junctions and increase paracellular permeability of luminal antigens. Thus, chronic intestinal barrier dysfunction hinders the resolution of inflammation. Dietary approaches may help mitigate intestinal barrier dysfunction and chronic inflammation. A growing body of work in rodent models of colitis has demonstrated that berry consumption inhibits chronic intestinal inflammation. Berries are a rich dietary source of polyphenolic compounds, particularly anthocyanins. However, berry anthocyanins have limited bioavailability and are extensively metabolized by the gut microbiota and host tissue. This review summarizes the literature regarding the beneficial functions of anthocyanin-rich berries in treating and preventing IBD. Here, we will establish the role of barrier function in the pathogenesis of IBD and how dietary anthocyanins and their known microbial catabolites modulate intestinal barrier function.


2020 ◽  
Vol 11 ◽  
Author(s):  
Runze Quan ◽  
Chaoyue Chen ◽  
Wei Yan ◽  
Ying Zhang ◽  
Xi Zhao ◽  
...  

B cell-activating factor (BAFF) production is increased in septic patients. However, the specific role of BAFF in sepsis remains unknown. This study was designed to investigate the expression and function of BAFF in an experimental endotoxemia model and to identify the potential mechanisms. We established an endotoxemia mouse (6–8 weeks, 20–22 g) model by administering 30 mg/kg lipopolysaccharide (LPS). BAFF levels in the circulating system and organ tissues were measured 4 and 8 h after LPS injection. Survival rates in the endotoxemia mice were monitored for 72 h after BAFF blockade. The effects of BAFF blockade on systemic and local inflammation, organ injuries, and intestinal barrier function were also evaluated 4 h after LPS treatment. BAFF production was systemically and locally elevated after LPS challenge. BAFF blockade improved the survival rate, systemic inflammation, and multi-organ injuries. Moreover, BAFF blockade attenuated both intestinal inflammation and impaired intestinal permeability. BAFF blockade upregulated ZO-1 and occludin protein levels via the NF-κB/MLCK/MLC signaling pathway. These results suggested that BAFF blockade protects against lethal endotoxemia at least partially by alleviating inflammation, multi-organ injuries, and improving intestinal barrier function and provides a novel focus for further research on sepsis and experimental evidence for clinical therapy.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3515
Author(s):  
Pingting Guo ◽  
Haichao Wang ◽  
Linbao Ji ◽  
Peixia Song ◽  
Xi Ma

The metabolic disorder caused by excessive fructose intake was reported extensively and often accompanied by intestinal barrier dysfunction. And the rising dietary fructose was consumed at an early age of human. However, related researches were almost conducted in rodent models, while in the anatomy and physiology of gastrointestinal tract, pig is more similar to human beings than rodents. Hence, weaned piglets were chosen as the model animals in our study to investigate the fructose’s impacts on intestinal tight junction, inflammation response and microbiota structure of piglets. Herein, growth performance, inflammatory response, oxidation resistance and ileal and colonic microbiota of piglet were detected after 35-day fructose supplementation. Our results showed decreased tight junction gene expressions in piglets after fructose addition, with no obvious changes in the growth performance, antioxidant resistance and inflammatory response. Moreover, fructose supplementation differently modified the microbiota structures in ileum and colon. In ileum, the proportions of Streptococcus and Faecalibacterium were higher in Fru group (fructose supplementation). In colon, the proportions of Blautia and Clostridium sensu stricto 1 were higher in Fru group. All the results suggested that tight junction dysfunction might be an earlier fructose-induced event than inflammatory response and oxidant stress and that altered microbes in ileum and colon might be the potential candidates to alleviate fructose-induced intestinal permeability alteration.


2019 ◽  
Vol 20 (8) ◽  
pp. 1912 ◽  
Author(s):  
Kathryn Burge ◽  
Aarthi Gunasekaran ◽  
Jeffrey Eckert ◽  
Hala Chaaban

Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.


2013 ◽  
Vol 304 (11) ◽  
pp. G970-G979 ◽  
Author(s):  
Andreas Fischer ◽  
Markus Gluth ◽  
Ulrich-Frank Pape ◽  
Bertram Wiedenmann ◽  
Franz Theuring ◽  
...  

Intestinal barrier dysfunction is pivotal in the etiology of inflammatory bowel diseases. Combined clinical and endoscopic remission (“mucosal healing”) in patients who received anti-TNF-α therapies suggests restitution of the intestinal barrier, but the mechanisms involved are largely unknown. We therefore investigated the impact of the anti-TNF-α antibody adalimumab on barrier function in two in vitro models. Combined stimulation of Caco-2 and T-84 cells with interferon-γ and TNF-α resulted in a significant decrease of transepithelial electrical resistance (TEER) within 6 h that was prevented by adalimumab in concentrations down to 100 ng/ml. Adalimumab furthermore antagonized the appearance of irregular membrane undulations and prevented internalization of tight junction proteins upon cytokine exposure. In addition, TNF-α induced a downregulation of claudin-1, claudin-2, claudin-4, and occludin as well as activation of phosphatidylinositol 3-kinase signaling in T-84 but not Caco-2 cells, which was reversed by adalimumab. At the signaling level, adalimumab prevented increased phosphorylation of myosin light chain as well as activation of p38 MAPK and NF-κB accompanying the decline in TEER in both model systems. Pharmacological inhibition of NF-κB signaling partially prevented the TNF-α-induced TEER loss, whereas inhibition of p38 worsened barrier dysfunction in Caco-2 but not T-84 cells. Taken together, these data demonstrate that adalimumab prevents barrier dysfunction induced by TNF-α both functionally and structurally as well as at the level of signal transduction. Barrier protection might therefore constitute a novel mechanism how anti-TNF-α therapy contributes to epithelial restitution and tissue repair in inflammatory bowel diseases.


2019 ◽  
Vol 7 (8) ◽  
pp. 271 ◽  
Author(s):  
Stefani Lobionda ◽  
Panida Sittipo ◽  
Hyog Young Kwon ◽  
Yun Kyung Lee

The gut microbiota maintains a symbiotic relationship with the host and regulates several important functions including host metabolism, immunity, and intestinal barrier function. Intestinal inflammation and inflammatory bowel disease (IBD) are commonly associated with dysbiosis of the gut microbiota. Alterations in the gut microbiota and associated changes in metabolites as well as disruptions in the intestinal barrier are evidence of the relationship between the gut microbiota and intestinal inflammation. Recent studies have found that many factors may alter the gut microbiota, with the effects of diet being commonly-studied. Extrinsic stressors, including environmental stressors, antibiotic exposure, sleep disturbance, physical activity, and psychological stress, may also play important roles in altering the composition of the gut microbiota. Herein, we discuss the roles of the gut microbiota in intestinal inflammation in relation to diet and other extrinsic stressors.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 154.2-154
Author(s):  
M. Zaiss ◽  
N. Taijc ◽  
K. Sarter ◽  
V. Azizov ◽  
L. Bucci ◽  
...  

Background:While it is known that microbial dysbiosis is associated with the onset of rheumatoid arthritis, mechanistic insights how it facilitates the development of arthritis remained largely elusive to date. It is especially interesting how microbial dysbiosis affects the transition from asymptomatic autoimmunity to arthritis. We speculated that a breakdown of intestinal barrier function caused by microbial dysbiosis allows immune cells to shuttle from the gut to the joints.Objectives:To test whether intestinal barrier function is impaired before the onset of human RA and experimental arthritis and to seek for evidence that immune cells from the gut migrate to the joints.Methods:In a longitudinal cohort of RA-at risk individuals markers of disturbed intestinal barrier function, such as zonulin, were analysed and linked to RA onset. Furthermore, new-onset RA patients were assessed for gut leakiness and their intestinal biopsies for the expression of tight junction proteins and immune cell infiltration. In the murine model of collagen-induced arthritis, sequential analysis of intestinal dysbiosis, intestinal barrier function and arthritis onset was carried out. Additionally, barrier function was assessed on intestinal organoids exposed to faecal supernatants from eu- and dysbiotic mice with and without inhibition of zonulin. Furthermore, three types of interventions restoring intestinal barrier function were carried out for testing their effects on the inhibition of arthritis onset. Finally, photo- converted cells from the gut were traced in the joints to test for cellular trafficking from one to the other compartment.Results:Zonulin, a potent regulator for intestinal tight junctions, was elevated in autoimmune mice and men before the onset of arthritis and predicted the onset of human RA. Intestinal barrier functions as well as epithelial tight junctions were decreased before the onset of experimental arthritis and at onset of human RA. In mice, induction of autoimmunity was followed by rapid intestinal dysbiosis followed by gut leakiness before arthritis started. Faecal supernatants of arthritic mice induce epithelial barrier dysfunction in intestinal organoids in zonulin dependent manner. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate, CB1R agonist or zonulin antagonist larazotide inhibited the development of arthritis. Finally, using photoconvertible mice, gut-borne immune cells were identified that homed to the joints when barrier function was impaired.Conclusion:In summary, these data show the intestinal barrier dysfunction precedes the onset of RA and allows the trafficking of immune cells from the gut to the joints. Targeting of intestinal tight junction function may therefore allow preventing the onset of RA.Acknowledgments:Funded by the DFG-FOR2886 PANDORA, DFG–CRC118, Staedtler foundation, Johannes und Frieda Marohn-Stiftung, Else Kröner-Fresenius foundation, Interdisciplinary Centre for Clinical Research, Erlangen (IZKF), BMBF-MASCARA and the IMI funded projectRTCure.Disclosure of Interests:Mario Zaiss: None declared, Narges Taijc: None declared, Kerstin Sarter: None declared, Vugar Azizov: None declared, laura Bucci: None declared, Yubin Luo: None declared, Juan de Dios Cañete: None declared, francesco ciccia Grant/research support from: pfizer, novartis, roche, Consultant of: pfizer, novartis, lilly, abbvie, Speakers bureau: pfizer, novartis, lilly, abbvie, Georg Schett Speakers bureau: AbbVie, BMS, Celgene, Janssen, Eli Lilly, Novartis, Roche and UCB


2017 ◽  
Vol 23 (6) ◽  
pp. 546-556 ◽  
Author(s):  
Huiling Zhu ◽  
Dingan Pi ◽  
Weibo Leng ◽  
Xiuying Wang ◽  
Chien-An Andy Hu ◽  
...  

Stress causes intestinal inflammation and barrier dysfunction. Corticotrophin-releasing factor (CRF)/CRF receptor (CRFR) signaling pathway has been shown to be important for stress-induced intestinal mucosal alteration. L-Asparagine (ASN) is a powerful stimulator of ornithine decarboxylase and cell proliferation in a variety of cell types, including colonic cells. In the present study, we investigated whether dietary ASN supplementation could alleviate the damage of intestinal barrier function caused by LPS through modulation of CRF/CRFR signaling pathway. Twenty-four weaned pigs were randomly divided into one of four treatments: (1) non-challenged control; (2) Escherichia coli LPS challenged control; (3) LPS + 0.5% ASN; (4) LPS + 1.0% ASN. LPS stress induced villous atrophy, intestinal morphology disruption and decreased claudin-1 expression. ASN supplementation increased intestinal claudin-1 protein expression and alleviated villous atrophy and intestinal morphology impairment caused by LPS stress. In addition, ASN supplementation increased the number of intestinal intraepithelial lymphocytes and reversed the elevations of intestinal mast cell number and neutrophil number induced by LPS stress. Moreover, ASN decreased the mRNA expression of intestinal CRF, glucocorticoid receptors and tryptase. These results indicate that ASN attenuates intestinal barrier dysfunction induced by LPS stress, and regulates CRF/CRFR1 signaling pathway and mast cell activation.


2010 ◽  
Vol 298 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
Lisa D. Kalischuk ◽  
Andre G. Buret

The inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis, are T cell-mediated diseases that are characterized by chronic, relapsing inflammation of the intestinal tract. The pathogenesis of IBD involves the complex interaction between the intestinal microflora, host genetic and immune factors, and environmental stimuli. Epidemiological analyses have implicated acute bacterial enteritis as one of the factors that may incite or exacerbate IBD in susceptible individuals. In this review, we examine how interactions between the common enteric pathogen Campylobacter jejuni ( C. jejuni ), the host intestinal epithelium, and resident intestinal microflora may contribute to the pathogenesis of IBD. Recent experimental evidence indicates that C. jejuni may permit the translocation of normal, noninvasive microflora via novel processes that implicate epithelial lipid rafts. This breach in intestinal barrier function may, in turn, prime the intestine for chronic inflammatory responses in susceptible individuals. Insights into the interactions between enteric pathogens, the host epithelia, and intestinal microflora will improve our understanding of disease processes that may initiate and/or exacerbate intestinal inflammation in patients with IBD and provide impetus for the development of new therapeutic approaches for the treatment of IBD.


Author(s):  
Mingxia Zhou ◽  
Jing He ◽  
Yingying Shi ◽  
Xiaoman Liu ◽  
Shangjian Luo ◽  
...  

Abstract Background and Aims There is evidence for a disturbed necroptosis function in many inflammatory diseases, but its role in inflammatory bowel diseases [IBD] and the underlying mechanisms are unclear. Here, we studied the functional significance and molecular mechanisms of ABIN3, a ubiquitin-binding protein, in regulating the ubiquitination and activation of necroptosis in IBD. Methods The expression of necroptosis hallmarks and ABIN3 were assessed in inflamed samples of IBD patients, dextran sodium sulphate [DSS]-induced colitis models, and azoxymethane [AOM]/DSS models in mice. ABIN3 was overexpressed and silenced to explore its function in regulating necroptosis, inflammation, and intestinal barrier function. Immuoprecipitiation [IP] and co-IP assays were performed to investigate the cross-talk between ABIN3 and deubiquitinating enzyme A20, and the mechanisms of coordinating ubiquitination modification to regulate necroptosis. Results Excessive necroptosis is an important contributory factor towards the uncontrolled inflammation and intestinal barrier defects in IBD and experimental colitis. Blocking necroptosis by Nec-1s or GSK’872 significantly prevented cell death and alleviated DSS-induced colitis in vivo, whereas in the AOM/DSS model, necroptosis inhibitors aggravated the severity of colitis-associated colon carcinogenesis [CAC]. Mechanistically, ABIN3 is rapidly recruited to the TNF-RSC complex, which interacts and coordinates with deubiquitinating enzyme A20 to control the K63 deubiquitination modification and subsequent activation of the critical necroptosis kinase, RIPK3, to suppress necroptosis. Conclusions ABIN3 regulates inflammatory response and intestinal barrier function by interacting with A20 and coordinating the K63 deubiquitination modification of necroptosis in IBD.


Sign in / Sign up

Export Citation Format

Share Document