scholarly journals Impacts of Fructose on Intestinal Barrier Function, Inflammation and Microbiota in a Piglet Model

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3515
Author(s):  
Pingting Guo ◽  
Haichao Wang ◽  
Linbao Ji ◽  
Peixia Song ◽  
Xi Ma

The metabolic disorder caused by excessive fructose intake was reported extensively and often accompanied by intestinal barrier dysfunction. And the rising dietary fructose was consumed at an early age of human. However, related researches were almost conducted in rodent models, while in the anatomy and physiology of gastrointestinal tract, pig is more similar to human beings than rodents. Hence, weaned piglets were chosen as the model animals in our study to investigate the fructose’s impacts on intestinal tight junction, inflammation response and microbiota structure of piglets. Herein, growth performance, inflammatory response, oxidation resistance and ileal and colonic microbiota of piglet were detected after 35-day fructose supplementation. Our results showed decreased tight junction gene expressions in piglets after fructose addition, with no obvious changes in the growth performance, antioxidant resistance and inflammatory response. Moreover, fructose supplementation differently modified the microbiota structures in ileum and colon. In ileum, the proportions of Streptococcus and Faecalibacterium were higher in Fru group (fructose supplementation). In colon, the proportions of Blautia and Clostridium sensu stricto 1 were higher in Fru group. All the results suggested that tight junction dysfunction might be an earlier fructose-induced event than inflammatory response and oxidant stress and that altered microbes in ileum and colon might be the potential candidates to alleviate fructose-induced intestinal permeability alteration.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Kwang Il Park ◽  
Dong Gun Kim ◽  
Bo Hyoung Lee ◽  
Jin Yeul Ma

Inflammatory bowel disease (IBD) comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBD increases the risk of colorectal cancer (CRC), depending on the extent and duration of intestinal inflammation. Increased IL-6 expression has been reported in IBD patients, which may be associated with intestinal barrier function through discontinuous tight junction (TJ). KIOM-MA is a specific agent for allergic diseases and cancer, and it is composed of several plants; these herbs have been used in traditional oriental medicine. We fermented KIOM-MA, the product of KIOM-MA128, using probiotics to improve the therapeutic efficacy via the absorption and bioavailability of the active ingredients. In this study, we demonstrated that KIOM-MA/MA128 exhibited anticolitis effects via the modulation of TJ protein. Interleukin-6 resulted in a dose-dependent decrease in the TER and an increase in the FITC-dextran permeability; however, pretreatment with 400 µg/ml KIOM-MA/MA128 resulted in a significant increase in the TER and a decrease in the FITC-dextran permeability via IL-6 induction. Furthermore, protein and mRNA TJ levels remained stable after pretreatment with 400 µg/ml KIOM-MA/MA128. Moreover, KIOM-MA/MA128 suppressed the expression of PLCγ1 and PKC. Taken together, these findings suggest novel information and clue of the anticolitis effects of KIOM-MA128 via regulation of tight junction.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Xiao Sun ◽  
Yalei Cui ◽  
Yingying Su ◽  
Zimin Gao ◽  
Xinying Diao ◽  
...  

ABSTRACT Weaning of piglets is accompanied by intestinal inflammation, impaired intestinal barrier function, and intestinal microflora disorder. Regulating intestinal microflora structure can directly or indirectly affect intestinal health and host growth and development. However, whether dietary fiber (DF) affects the inflammatory response and barrier function by affecting the intestinal microflora and its metabolites is unclear. In this study, we investigated the role of intestinal microflora in relieving immune stress and maintaining homeostasis using piglets with lipopolysaccharide (LPS)-induced intestinal injury as a model. DF improved intestinal morphology and barrier function, inhibited the expression of inflammatory signal pathways (Toll-like receptor 2 [TLR2], TLR4, and NF-κB) and proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]), and upregulated the expression of barrier-related genes (encoding claudin-1, occludin, and ZO-1). The contents of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and the activity of diamine oxidase in plasma were decreased. Meanwhile, DF had a strong effect on the composition and function of intestinal microflora at different taxonomic levels, the relative abundances of cellulolytic bacteria and anti-inflammatory bacteria were increased, and the concentrations of propionate, butyrate, and total short-chain fatty acids (SCFAs) in intestinal contents were increased. In addition, the correlation analysis also revealed the potential relationship between metabolites and certain intestinal microflora, as well as the relationship between metabolites and intestinal morphology, intestinal gene expression, and plasma cytokine levels. These results indicate that DF improves intestinal barrier function, in part, by altering intestinal microbiota composition and increasing the synthesis of SCFAs, which subsequently alleviate local and systemic inflammation. IMPORTANCE Adding DF to the diet of LPS-challenged piglets alleviated intestinal and systemic inflammation, improved intestinal barrier function, and ultimately alleviated the growth retardation of piglets. In addition, the addition of DF significantly increased the relative abundance of SCFA-producing bacteria and the production of SCFAs. We believe that the improvement of growth performance of piglets with LPS-induced injury can be attributed to the beneficial effects of DF on intestinal microflora and SCFAs, which reduced the inflammatory response in piglets, improving intestinal barrier function and enhancing body health. These research results provide a theoretical basis and guidance for the use of specific fiber sources in the diet to improve intestinal health and growth performance of piglets and thus alleviate weaning stress. Our data also provide insights for studying the role of DF in regulating gastrointestinal function in human infants.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 154.2-154
Author(s):  
M. Zaiss ◽  
N. Taijc ◽  
K. Sarter ◽  
V. Azizov ◽  
L. Bucci ◽  
...  

Background:While it is known that microbial dysbiosis is associated with the onset of rheumatoid arthritis, mechanistic insights how it facilitates the development of arthritis remained largely elusive to date. It is especially interesting how microbial dysbiosis affects the transition from asymptomatic autoimmunity to arthritis. We speculated that a breakdown of intestinal barrier function caused by microbial dysbiosis allows immune cells to shuttle from the gut to the joints.Objectives:To test whether intestinal barrier function is impaired before the onset of human RA and experimental arthritis and to seek for evidence that immune cells from the gut migrate to the joints.Methods:In a longitudinal cohort of RA-at risk individuals markers of disturbed intestinal barrier function, such as zonulin, were analysed and linked to RA onset. Furthermore, new-onset RA patients were assessed for gut leakiness and their intestinal biopsies for the expression of tight junction proteins and immune cell infiltration. In the murine model of collagen-induced arthritis, sequential analysis of intestinal dysbiosis, intestinal barrier function and arthritis onset was carried out. Additionally, barrier function was assessed on intestinal organoids exposed to faecal supernatants from eu- and dysbiotic mice with and without inhibition of zonulin. Furthermore, three types of interventions restoring intestinal barrier function were carried out for testing their effects on the inhibition of arthritis onset. Finally, photo- converted cells from the gut were traced in the joints to test for cellular trafficking from one to the other compartment.Results:Zonulin, a potent regulator for intestinal tight junctions, was elevated in autoimmune mice and men before the onset of arthritis and predicted the onset of human RA. Intestinal barrier functions as well as epithelial tight junctions were decreased before the onset of experimental arthritis and at onset of human RA. In mice, induction of autoimmunity was followed by rapid intestinal dysbiosis followed by gut leakiness before arthritis started. Faecal supernatants of arthritic mice induce epithelial barrier dysfunction in intestinal organoids in zonulin dependent manner. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate, CB1R agonist or zonulin antagonist larazotide inhibited the development of arthritis. Finally, using photoconvertible mice, gut-borne immune cells were identified that homed to the joints when barrier function was impaired.Conclusion:In summary, these data show the intestinal barrier dysfunction precedes the onset of RA and allows the trafficking of immune cells from the gut to the joints. Targeting of intestinal tight junction function may therefore allow preventing the onset of RA.Acknowledgments:Funded by the DFG-FOR2886 PANDORA, DFG–CRC118, Staedtler foundation, Johannes und Frieda Marohn-Stiftung, Else Kröner-Fresenius foundation, Interdisciplinary Centre for Clinical Research, Erlangen (IZKF), BMBF-MASCARA and the IMI funded projectRTCure.Disclosure of Interests:Mario Zaiss: None declared, Narges Taijc: None declared, Kerstin Sarter: None declared, Vugar Azizov: None declared, laura Bucci: None declared, Yubin Luo: None declared, Juan de Dios Cañete: None declared, francesco ciccia Grant/research support from: pfizer, novartis, roche, Consultant of: pfizer, novartis, lilly, abbvie, Speakers bureau: pfizer, novartis, lilly, abbvie, Georg Schett Speakers bureau: AbbVie, BMS, Celgene, Janssen, Eli Lilly, Novartis, Roche and UCB


2020 ◽  
Vol 11 ◽  
Author(s):  
Runze Quan ◽  
Chaoyue Chen ◽  
Wei Yan ◽  
Ying Zhang ◽  
Xi Zhao ◽  
...  

B cell-activating factor (BAFF) production is increased in septic patients. However, the specific role of BAFF in sepsis remains unknown. This study was designed to investigate the expression and function of BAFF in an experimental endotoxemia model and to identify the potential mechanisms. We established an endotoxemia mouse (6–8 weeks, 20–22 g) model by administering 30 mg/kg lipopolysaccharide (LPS). BAFF levels in the circulating system and organ tissues were measured 4 and 8 h after LPS injection. Survival rates in the endotoxemia mice were monitored for 72 h after BAFF blockade. The effects of BAFF blockade on systemic and local inflammation, organ injuries, and intestinal barrier function were also evaluated 4 h after LPS treatment. BAFF production was systemically and locally elevated after LPS challenge. BAFF blockade improved the survival rate, systemic inflammation, and multi-organ injuries. Moreover, BAFF blockade attenuated both intestinal inflammation and impaired intestinal permeability. BAFF blockade upregulated ZO-1 and occludin protein levels via the NF-κB/MLCK/MLC signaling pathway. These results suggested that BAFF blockade protects against lethal endotoxemia at least partially by alleviating inflammation, multi-organ injuries, and improving intestinal barrier function and provides a novel focus for further research on sepsis and experimental evidence for clinical therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 187
Author(s):  
Lokman Pang ◽  
Jennifer Huynh ◽  
Mariah G. Alorro ◽  
Xia Li ◽  
Matthias Ernst ◽  
...  

The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.


Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


2021 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

Abstract Background: The effects of dietary supplementation with guava leaf extracts (GE) on growth performance, diarrhea and intestinal barrier function, as well as associated with its modulation of serum and fecal metabolic changes in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated.Method: Fifty weaned piglets (Duroc × Yorkshire × Landrace) from 5 pens (2 piglets per pen) were randomly divided into five groups: blank control group (BC), negative control group (NC), or those supplemented with 50 mg kg-1 (S50), 100 mg kg-1 (S100), or 200 (S200) mg kg-1 diet GE, respectively. On day 4, all piglets (except for BC) were orally challenged with about 1.0 × 109 colony-forming units (CFU) enterotoxigenic ETEC. After 28-day trial, growth performance, diarrhea incidence, intestinal barrier function and metabolomics of serum and fecal were investigated.Results: We demonstrated that dietary supplementation with GE (50-200 mg kg-1) reduced diarrhea incidence of piglets and increased expression of intestinal tight junction proteins (ZO-1, Occludin, Claudin-1) (P < 0.05) and sodium hydrogen exchanger 3 (NHE3) (P < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) upregulated level of tetrahydrofolic acid (THF) and reversed higher level of nicotinamide-adenine dinucleotide phosphate (NADP) caused by ETEC in serum compared with NC group (P < 0.05), and enhanced antioxidant ability of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid caused by ETEC in feces compared with NC group (P < 0.05), and decreased oxidative stress response of piglets. Further, there were no differences (P > 0.05) in the final weight, average daily feed intake (ADFI) and F/G among dietary groups during the overall period, and piglets in S50 group has the higher average daily gain (ADG). Conclusion: Dietary supplementation with 50-200 mg kg-1 GE reduced diarrhea incidence of weaned piglets challenged by ETEC and exhibited positive effect on improving intestinal barrier function. Meanwhile, dietary addition with GE organized and redistributed energy resources through similar or dissimilar metabolic pathways, and finally enhanced antioxidant ability of piglets challenged by ETEC.


2019 ◽  
Vol 5 ◽  
pp. 18-30 ◽  
Author(s):  
Jonathan C. Valdez ◽  
Bradley W. Bolling

Chronic intestinal inflammation, occurring in inflammatory bowel diseases (IBD), is associated with compromised intestinal barrier function. Inflammatory cytokines disrupt tight junctions and increase paracellular permeability of luminal antigens. Thus, chronic intestinal barrier dysfunction hinders the resolution of inflammation. Dietary approaches may help mitigate intestinal barrier dysfunction and chronic inflammation. A growing body of work in rodent models of colitis has demonstrated that berry consumption inhibits chronic intestinal inflammation. Berries are a rich dietary source of polyphenolic compounds, particularly anthocyanins. However, berry anthocyanins have limited bioavailability and are extensively metabolized by the gut microbiota and host tissue. This review summarizes the literature regarding the beneficial functions of anthocyanin-rich berries in treating and preventing IBD. Here, we will establish the role of barrier function in the pathogenesis of IBD and how dietary anthocyanins and their known microbial catabolites modulate intestinal barrier function.


2021 ◽  
Author(s):  
Shuai Liu ◽  
Yunxia Xiong ◽  
Jingping Chen ◽  
Hao Xiao ◽  
Qiwen Wu ◽  
...  

Abstract BACKGROUND: The beneficial function of fermented feed in livestock industry has been widely investigated. However, little is known about the effects of fermented feed on different weaned-day piglets. This study aimed to investigate the effects of fermented diet on the growth performance, intestinal function and microbiota of piglets weaned at age of 21 days and 28 days.RESULTS: The results found that weaning on d 21 significantly increased (P < 0.05) ADG, and ADFI (calculated based on wet weight and dry matter), while reduced (P < 0.05) F: G, the activities of trypsin and lipase of jejunum and villus height of ileum, compared with 28-d weaning. The protein levels of Occludin, Claudin-1, ZO-1 of ileum in the groups weaning on d 21 were less (P < 0.05) than the groups weaning on d 28. Moreover, dietary supplementation with fermented diet upregulated (P < 0.05) Occludin, Claudin-1, ZO-1 proteins of ileum, compared with the groups treated with control diet both weaning on d 21 and d 28. In addition, dietary supplementation with fermented diet decreased (P < 0.05) the relative abundance of Clostridia (class) and increased (P < 0.05) Bacteroidia (class) level of cecal microbiota, compared with the groups treated with control diet both weaning on d 21 and d 28. However, supplementation with fermented diet did not affect the concentrations of short-chain fatty acids in the cecum (P > 0.05).CONCLUSION: Therefore, our data suggest that feed digestibility is improved in piglets weaned at 21 days, but intestinal barrier function is weaker than in piglets weaned at 28 days. However, compared with feeding control diet, supplementation with fermented diet both improved feed conversion and intestinal barrier function of weaned piglets by modulating intestinal microbiota.


Sign in / Sign up

Export Citation Format

Share Document