scholarly journals Synthesis of Cefixime and Azithromycin Nanoparticles: An Attempt to Enhance Their Antimicrobial Activity and Dissolution Rate

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Farhat Ali Khan ◽  
Muhammad Zahoor ◽  
Noor Ul Islam ◽  
Rabia Hameed

In this study cefixime and azithromycin nanoparticles were prepared by antisolvent precipitation with syringe pump (APSP) and evaporator precipitation nanosuspension (EPN) methods. The nanoparticles were characterized by XRD, FTIR, SEM, and TGA. X-ray diffraction pattern of cefixime samples showed the amorphous form, while azithromycin samples showed crystalline form. The FTIR spectra of parental drugs and synthesized nanoparticles have no major structural changes detected. The SEM images showed that nanoparticles of both drugs have submicron sized and nanosized particles. TGA analyses showed that above 30°C the decomposition of cefixime samples starts and their weight gradually decreases up to 600°C, while, in case of azithromycin, 30°C to 250°C, very small changes occur in weight; from above 250°C decomposition of the sample took place to a greater extent. The antibacterial activities of raw drugs and prepared samples of nanoparticles were determined againstStaphylococcus aureus,Shigella,E. coli, andSalmonella typhiby agar well diffusion method. Every time the nanoparticles samples showed better results than parental drugs. The dissolution rates of raw drugs and prepared nanoparticles were also determined. The results were always better for the synthesized nanoparticles than parental drug.

2021 ◽  
Vol 21 (11) ◽  
pp. 5784-5793
Author(s):  
K. Geetha ◽  
R. Udhayakumar

In this study, spinel NiCexFe2–XO4 (x = 0.0 - 0.5) nanoparticles (NPs) was synthesized by microwave combustion technique (MCT) utilizing the fuel of Aloe vera plant extract. The establishment of spinel cubic crystal structure was ensured by powder X-ray diffraction (PXRD) technique. The particles like nanostructured morphology were confirmed by high-resolution scanning electron microscope (HRSEM). Energy dispersive X-ray (EDX) studies confirmed the formation of spinel ferrite structure and ensured that no other elements were present. Magnetic parameters such as remanant magnetisation (Mr), coercivity (He) and saturation magnetization (Ms) were calculated from the magnetic hysteresis (M-H) loops, which exhibited ferromagnetic behaviour. The photocatalytic behavior was investigated by visible light treatment for the photocatalytic degradation (PCD) of rhodamine B (Rh-B) dye and the sample NiCe0.3Fe1.7O4 exhibits higher PCD efficiency (93.88%) than other compositions. The antibacterial activities of gram-positive S. aureus, B. subtilis, gramnegative K. pneumonia and E. coli have been investigated using undoped and Ce3+ substituted NiFe2O4 NPs and observed higher activity, which indicated that, they can be used in the bio-medical applications.


2019 ◽  
Vol 8 (1) ◽  
pp. 590-599 ◽  
Author(s):  
Kaushik Roy ◽  
Ambikesh K. Srivastwa ◽  
Chandan K. Ghosh

Abstract In this report, we present a simple and unexplored procedure for green synthesis of silver nanoparticles featuring exudation of Euphorbia acruensis along with the study of its antibacterial and anticoagulant properties. Analytical techniques like ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) were used to analyse the production, crystallinity and morphology of bio-reduced silver nanoparticles. The antibacterial study was performed by following standard disc diffusion method. Most importantly, the anticoagulant and thrombolytic activities of biogenic silver nanoparticles were evaluated by addition of nanoparticles to human blood samples under practical conditions. These green synthesized silver nanoparticles were found to have potent antibacterial, anticoagulant and thrombolytic properties which make them an attractive choice for future medical applications.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2103
Author(s):  
Elmer Gastelo ◽  
Juan Montes de Oca ◽  
Edward Carpio ◽  
Juan Espinoza ◽  
Pilar García ◽  
...  

This paper focuses on the synthesis of cobalt ferrite nanoparticles by the sol–gel method and their photocatalytic activity to eliminate bacteria in aqueous media at two different scales: in a laboratory reactor and a solar pilot plant. Cobalt ferrite nanoparticles were prepared using Co(II) and Fe(II) salts as precursors and cetyltrimethyl ammonium bromide as a surfactant. The obtained nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy. Escherichia coli (E. coli) strain ATCC 22922 was used as model bacteria for contact biocidal analysis carried out by disk diffusion method and photocatalysis under an ultraviolet A (UV-A) lamp for laboratory analysis and solar radiation (radiation below 350 W/m2 in a typical cloudy day) for the pilot plant analysis. The results showed that cobalt ferrite nanoparticles have an average diameter of (36 ± 20) nm and the X-ray diffraction pattern shows a cubic spinel structure. Using the disk diffusion technique, it was obtained inhibition zones of (17 ± 2) mm diameter. Results confirm the photocatalytic elimination of E. coli in water samples with remaining bacteria below 1% of the initial concentration during the experiment time (30 min for laboratory tests and 1.5 h for pilot plant tests).


2021 ◽  
Vol 5 (1) ◽  
pp. 436-444
Author(s):  
Sabiu Shitu ◽  
M. Attahiru ◽  
F. A. Iliya

The antibacterial activity of Tokar sha; a local traditional medication widely used by many people in North-west zone of Nigeria especially Sokoto, Kebbi and Zamfara against enteric infections were examined against some clinical isolates of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus cereus and Salmonella typhi) using agar well diffusion method. The pattern of inhibition varied with the tokar sha concentrations and the organisms tested. The tokar sha was more effective on E. coli with a maximum zone of growth inhibition of 25mm at 35mg/ml followed by B. cereus (20mm). However, S. aureus and S. typhi were resistant to tokar sha at all concentrations tested. The minimum inhibitory concentrations (MIC) were found to be 35mg/ml for both E. coli and B. cereus. The antibacterial activities exhibited by tokar sha in this study could be attributed to the presence of its constituents which signifies the potential of the tokar sha as a therapeutic agent. These findings may justify the ethnomedicinal use of tokar sha as an antibacterial agent against enterobacteria


1998 ◽  
Vol 54 (6) ◽  
pp. 1460-1463 ◽  
Author(s):  
Maria Solà ◽  
F.-Xavier Gomis-Rüth ◽  
Alicia Guasch ◽  
Luis Serrano ◽  
Miquel Coll

PhoB is the response regulator of the E. coli two-component signal transduction system for phosphate regulation. It is a transcription factor that activates more than 30 genes of the pho regulon. Crystals of the receiver domain of PhoB were obtained by applying the hanging-drop vapour-diffusion method. X-ray diffraction data have been collected using synchrotron radiation to 1.88 Å resolution. The crystals belong to the orthorhombic space group P212121 with unit-cell constants a = 34.11, b = 60.42, c = 119.97 Å. The Matthews parameter suggests that PhoB crystallizes with two molecules per asymmetric unit, suggesting that activating dimerization occurs in the crystal.


Author(s):  
Thanuja B ◽  
Charles Kanagam

Objective: The objective of this work to evaluate the antimicrobial activities of synthesized 22’dichlorohydrobenzoin (22’CD) a new organic crystal.Methods: 22’CD a new organic crystal was grown by vapor diffusion method. Single crystals of 22’CD have been subjected to X-ray diffraction analysis to estimate the lattice parameters and the space group. The molecular structure was confirmed using Fourier transform infrared and nuclear magnetic resonance (NMR) spectral analyses. Optical behavior and thermal stability of the crystal were determined using UV-Vis spectroscopy and thermogravimetry-differential thermal analysis curves. In the present study, antimicrobial activity of 22’CD was evaluated against Escherichia coli and Bacillus subtilis was evaluated by agar well diffusion method.Results: Antibacterial activity of 22’CD was analyzed with ciprofloxacin and miconazole standard and tested against E. coli, Pseudomonas aeruginosa, Salmonella paratyphi, Klebsiella pneumonia’s, Staphylococcus aureus, Streptococcus progenies, and B. subtilis.Conclusion: The 22’CD was found to be effective against E. coli and B. subtitles.


2021 ◽  
Vol 68 (3) ◽  
pp. 700-708
Author(s):  
Heng-Yu Qian

Two new polynuclear zinc complexes [Zn2Br2(L1)2] (1) and [Zn(μ1,5-dca)L2]n (2), and two new mononuclear cobalt(III) complexes [CoL1N3(Brsal)] (3) and [CoL2(HL2)] (4), where L1 = 5-bromo-2-(((2-dimethylamino)ethyl)imino)methyl)phenolate, L2 = 5-bromo-2-(((2-hydroxyethyl)imino)methyl)phenolate, dca = dicyanoamide, Brsal = 5-bromo-2-formylphenolate, have been synthesized and characterized. The complexes were characterized by elemental analyses, IR, UVVis spectra, molar conductivity, and single crystal X-ray diffraction. X-ray analysis indicates that the Zn atoms in complex 1 are in distorted square pyramidal coordination, the Zn atoms in complex 2 are in distorted trigonal bipyramidal coordination, and the Co atoms in complexes 3 and 4 are in octahedral coordination. The molecules of the complexes are stacked through π···π interactions and hydrogen bonds. The complexes were assayed for antibacterial activities against three Gram-positive bacterial strains (B. subtilis, S. aureus, and St. faecalis) and three Gram-negative bacterial strains (E. coli, P. aeruginosa, and E. cloacae) by MTT method.


2021 ◽  
Vol 68 (3) ◽  
pp. 638-644
Author(s):  
Heng-Yu Qian

Two new tetranuclear zinc(II) complexes, [Zn4(L1)2(μ2-η1:η1-CH3COO)4(μ1,1-N3)2] (1) and [Zn4(L2)4(CH3CH2OH) (H2O)] (2), where L1 and L2 are the deprotonated forms of 4-fluoro-2-((pyridin-2-ylmethylimino)methyl)phenol (HL1) and 4-fluoro-2-((2-(hydroxymethyl)phenylimino)methyl)phenol (H2L2), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, and single crystal X-ray diffraction. X-ray crystal structural study indicated that the distances between the adjacent Zn atoms are 3.160(1)–3.353(1) Å in 1 and 3.005(1)–3.168(1) Å in 2. All zinc atoms in 1 are pentacoordinated in trigonal bipyramidal geometry, and those in 2 are in square pyramidal and octahedral geometry. The complexes and the Schiff bases were assayed for antibacterial activities against three Gram-positive bacterial strains (B. subtilis, S. aureus, and St. faecalis) and three Gram-negative bacterial strains (E. coli, P. aeruginosa, and E. cloacae) by MTT method.


Author(s):  
Jung-Hye Ha ◽  
Yumi Eo ◽  
Hee-Chul Ahn ◽  
Kyoung-Seok Ryu

LsrK is one of the key components of theluxS-regulated (lsr) operon inEscherichia coliand plays an important role during the quorum-sensing (QS) process mediated by autoinducer-2 (AI-2). The AI-2 molecule is imported into the cell by the LsrACB transporter and is subsequently phosphorylated (to AI-2-P) by LsrK. AI-2-P binds to the repressor protein of thelsroperon (LsrR) and triggers various cellular responses related to QS by dissociating LsrR from the DNA. Although a large amount of purified LsrK is required for structural studies, recombinant GST-LsrK was mostly expressed in an insoluble form. To enhance the soluble expression of LsrK, an attempt was made to increase the expression of the cellular chaperone proteins that are well known to support proper protein folding. TransformedE. coliwas cultured in high-salt LB medium and heat shock was applied prior to subsequent IPTG induction at 20°C. These procedures increased the yield of purified LsrK by about tenfold compared with standard IPTG induction at 20°C. The expressed LsrK was readily purified by GST-affinity chromatography. Crystals of LsrK were grown by the hanging-drop vapour-diffusion method. The X-ray diffraction data of the crystal were processed in a primitive hexagonal space group to 2.9 Å resolution.


Molekul ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 210
Author(s):  
Risa Nofiani ◽  
Rizky Rizky ◽  
Ridho Brilliantoro

This study aims to explore the anti-bacterial and toxicity activities from a rare actinobacterium isolated from mangrove, Mempawah District, West Kalimantan. The mangrove mud sample from Mempawah district was inoculated on ISP4 agar using a pour plate method. After 4 days of incubation, a colony of suspected actinobacterium was appeared, then isolated and coded as SM1P. SM1P was characterized based on morphological and biochemical traits and identified as a genus of Streptroporangium then called Streptroporangium sp. SM1P. Streptroporangium sp. SM1P was carried out anti-bacterial assay on both ISP1 agar and ISP4 agar media using the cross-streak method for the solid-state fermentation. The result showed that Streptroporangium sp. SM1P could inhibit Streptococcus sp. and Salmonella typhi on ISP1 agar and treptococcus sp., Escherichia coli, Vibrio cholerae, Staphylococcus aureus and Salmonella typhi on ISP4 agar.  Streptroporangium sp. SM1P was cultivated on ISP1 broth and extracted using ethyl acetate, then evaporated to obtain crude extract. The crude extract was used for anti-bacterial assay (well-diffusion method for liquid-state fermentation) and toxicity assay (brine shrimp lethality test). The crude extract was active against 2 of the test bacteria (Streptococcus sp. and E. coli). The best medium and state fermentation for anti-bacterial assay were ISP4 agar with the condition of solid-state fermentation. The extract SM1P prepared on ISP1 broth showed toxic activity based on LC50 (106.094 µg/mL). Therefore, Streptroporangium sp. SM1P have a potential source to explore secondary metabolites having anti-bacterial and toxicity activities.


Sign in / Sign up

Export Citation Format

Share Document