scholarly journals Dual-Layer Density Estimation for Multiple Object Instance Detection

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Zhang ◽  
Daokui Qu ◽  
Fang Xu ◽  
Kai Jia ◽  
Xueying Sun

This paper introduces a dual-layer density estimation-based architecture for multiple object instance detection in robot inventory management applications. The approach consists of raw scale-invariant feature transform (SIFT) feature matching and key point projection. The dominant scale ratio and a reference clustering threshold are estimated using the first layer of the density estimation. A cascade of filters is applied after feature template reconstruction and refined feature matching to eliminate false matches. Before the second layer of density estimation, the adaptive threshold is finalized by multiplying an empirical coefficient for the reference value. The coefficient is identified experimentally. Adaptive threshold-based grid voting is applied to find all candidate object instances. Error detection is eliminated using final geometric verification in accordance with Random Sample Consensus (RANSAC). The detection results of the proposed approach are evaluated on a self-built dataset collected in a supermarket. The results demonstrate that the approach provides high robustness and low latency for inventory management application.

2011 ◽  
Vol 65 ◽  
pp. 497-502
Author(s):  
Yan Wei Wang ◽  
Hui Li Yu

A feature matching algorithm based on wavelet transform and SIFT is proposed in this paper, Firstly, Biorthogonal wavelet transforms algorithm is used for medical image to delaminating, and restoration the processed image. Then the SIFT (Scale Invariant Feature Transform) applied in this paper to abstracting key point. Experimental results show that our algorithm compares favorably in high-compressive ratio, the rapid matching speed and low storage of the image, especially for the tilt and rotation conditions.


2010 ◽  
Vol 9 (4) ◽  
pp. 29-34 ◽  
Author(s):  
Achim Weimert ◽  
Xueting Tan ◽  
Xubo Yang

In this paper, we present a novel feature detection approach designed for mobile devices, showing optimized solutions for both detection and description. It is based on FAST (Features from Accelerated Segment Test) and named 3D FAST. Being robust, scale-invariant and easy to compute, it is a candidate for augmented reality (AR) applications running on low performance platforms. Using simple calculations and machine learning, FAST is a feature detection algorithm known to be efficient but not very robust in addition to its lack of scale information. Our approach relies on gradient images calculated for different scale levels on which a modified9 FAST algorithm operates to obtain the values of the corner response function. We combine the detection with an adapted version of SURF (Speed Up Robust Features) descriptors, providing a system with all means to implement feature matching and object detection. Experimental evaluation on a Symbian OS device using a standard image set and comparison with SURF using Hessian matrix-based detector is included in this paper, showing improvements in speed (compared to SURF) and robustness (compared to FAST)


2020 ◽  
Vol 37 (4) ◽  
pp. 619-626
Author(s):  
Shizhen Bai ◽  
Fuli Han

The monitoring of tourist behaviors, coupled with the recognition of scenic spots, greatly improves the quality and safety of travel. The visual information is the underlying features of scenic spot images, but the semantics of the information have not been satisfactorily classified or described. Based on image processing technologies, this paper presents a novel method for scenic spot retrieval and tourist behavior recognition. Firstly, the framework of scenic spot image retrieval was constructed, followed by a detailed introduction to the extraction of scale invariant feature transform (SIFT) features. The SIFT feature extraction includes five steps: scale space construction, local space extreme point detection, precise positioning of key points, determination of key point size and direction, and generation of SIFT descriptor. Next, multiple correlated images were mined for the target scenic spot image, and the feature matching method between the target image and the set of scenic spot images was introduced in details. On this basis, a tourist behavior recognition method was designed based on temporal and spatial consistency. The proposed method was proved effective through experiments. The research results provide theoretical reference for image retrieval and behavior recognition in many other fields.


Author(s):  
Min Chen ◽  
Qing Zhu ◽  
Shengzhi Huang ◽  
Han Hu ◽  
Jingxue Wang

Improving the matching reliability of low-altitude images is one of the most challenging issues in recent years, particularly for images with large viewpoint variation. In this study, an approach for low-altitude remote sensing image matching that is robust to the geometric transformation caused by viewpoint change is proposed. First, multiresolution local regions are extracted from the images and each local region is normalized to a circular area based on a transformation. Second, interest points are detected and clustered into local regions. The feature area of each interest point is determined under the constraint of the local region which the point belongs to. Then, a descriptor is computed for each interest point by using the classical scale invariant feature transform (SIFT). Finally, a feature matching strategy is proposed on the basis of feature similarity confidence to obtain reliable matches. Experimental results show that the proposed method provides significant improvements in the number of correct matches compared with other traditional methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sajid Khan ◽  
Dong-Ho Lee ◽  
Asif Khan ◽  
Ahmad Waqas ◽  
Abdul Rehman Gilal ◽  
...  

Fingerprint registration and verification is an active area of research in the field of image processing. Usually, fingerprints are obtained from sensors; however, there is recent interest in using images of fingers obtained from digital cameras instead of scanners. An unaddressed issue in the processing of fingerprints extracted from digital images is the angle of the finger during image capture. To match a fingerprint with 100% accuracy, the angles of the matching features should be similar. This paper proposes a rotation and scale-invariant decision-making method for the intelligent registration and recognition of fingerprints. A digital image of a finger is taken as the input and compared with a reference image for derotation. Derotation is performed by applying binary segmentation on both images, followed by the application of speeded up robust feature (SURF) extraction and then feature matching. Potential inliers are extracted from matched features by applying the M-estimator. Matched inlier points are used to form a homography matrix, the difference in the rotation angles of the finger in both the input and reference images is calculated, and finally, derotation is performed. Input fingerprint features are extracted and compared or stored based on the decision support system required for the situation.


2012 ◽  
Vol 239-240 ◽  
pp. 1232-1237 ◽  
Author(s):  
Can Ding ◽  
Chang Wen Qu ◽  
Feng Su

The high dimension and complexity of feature descriptor of Scale Invariant Feature Transform (SIFT), not only occupy the memory spaces, but also influence the speed of feature matching. We adopt the statistic feature point’s neighbor gradient method, the local statistic area is constructed by 8 concentric square ring feature of points-centered, compute gradient of these pixels, and statistic gradient accumulated value of 8 directions, and then descending sort them, at last normalize them. The new feature descriptor descend dimension of feature from 128 to 64, the proposed method can improve matching speed and keep matching precision at the same time.


Sign in / Sign up

Export Citation Format

Share Document