scholarly journals Overexpression ofAaWRKY1Leads to an Enhanced Content of Artemisinin inArtemisia annua

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weimin Jiang ◽  
Xueqing Fu ◽  
Qifang Pan ◽  
Yueli Tang ◽  
Qian Shen ◽  
...  

Artemisinin is an effective component of drugs against malaria. The regulation of artemisinin biosynthesis is at the forefront of artemisinin research. Previous studies showed that AaWRKY1 can regulate the expression ofADS, which is the first key enzyme in artemisinin biosynthetic pathway. In this study,AaWRKY1was cloned, and it activated ADSpro and CYPpro in tobacco using dual-LUC assay. To further study the function of AaWRKY1, pCAMBIA2300-AaWRKY1 construct under 35S promoter was generated. Transgenic plants containingAaWRKY1were obtained, and four independent lines with high expression ofAaWRKY1were analyzed. The expression ofADSandCYP, the key enzymes in artemisinin biosynthetic pathway, was dramatically increased inAaWRKY1-overexpressingA. annuaplants. Furthermore, the artemisinin yield increased significantly inAaWRKY1-overexpressingA. annuaplants. These results showed that AaWRKY1 increased the content of artemisinin by regulating the expression of bothADSandCYP. It provides a new insight into the mechanism of regulation on artemisinin biosynthesis via transcription factors in the future.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 785
Author(s):  
Muhammad Zeshan Aslam ◽  
Xiang Lin ◽  
Xiang Li ◽  
Nan Yang ◽  
Longqing Chen

Wintersweet (Chimonanthus praecox L.) is an ornamental and economically significant shrub known for its unique flowering characteristics, especially the emission of abundant floral volatile organic compounds. Thus, an understanding of the molecular mechanism of the production of these compounds is necessary to create new breeds with high volatile production. In this study, two bHLH transcription factors (CpMYC2 and CpbHLH13) of Wintersweet H29 were functionally characterized to illustrate their possible role in the production of volatile compounds. The qRT-PCR results showed that the expression of CpMYC2 and CpbHLH13 increased from the flower budding to full bloom stage, indicating that these two genes may play an essential role in blooming and aroma production in wintersweet. Gas chromatography-mass spectroscopy (GC-MS) analysis revealed that the overexpression of CpMYC2 in arabidopsis (Arabidopsis thaliana) AtMYC2-2 mutant (Salk_083483) and tobacco (Nicotiana tabaccum) genotype Petit Havana SR1 significantly increased floral volatile monoterpene, especially linalool, while the overexpression of CpbHLH13 in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and tobacco genotype SR1 increased floral sesquiterpene β-caryophyllene production in both types of transgenic plants respectively. High expression of terpene synthase (TPS) genes in transgenic A. thaliana along with high expression of CpMYC2 and CpbHLH13 in transgenic plants was also observed. The application of a combination of methyl jasmonic acid (MeJA) and gibberellic acid (GA3) showed an increment in linalool production in CpMYC2-overexpressing arabidopsis plants, and the high transcript level of TPS genes also suggested the involvement of CpMYC2 in the jasmonic acid (JA) signaling pathway. These results indicate that both the CpMYC2 and CpbHLH13 transcription factors of wintersweet are possibly involved in the positive regulation and biosynthesis of monoterpene (linalool) and sesquiterpene (β-caryophyllene) in transgenic plants. This study also indicates the potential application of wintersweet as a valuable genomic material for the genetic modification of floral scent in other flowering plants that produce less volatile compounds.


ACS Omega ◽  
2018 ◽  
Vol 3 (8) ◽  
pp. 8794-8802 ◽  
Author(s):  
Thitirat Meelaph ◽  
Khwanlada Kobtrakul ◽  
N. Nopchai Chansilpa ◽  
Yuepeng Han ◽  
Dolly Rani ◽  
...  

2021 ◽  
Author(s):  
Xuanxuan Zhou ◽  
Xilin Wang ◽  
Huiling Huang ◽  
Daidi Wu ◽  
Xiaobing Wang ◽  
...  

Abstract BackgroundPatchouli alcohol is an effective component of the medicinal plant patchouli. Similar to other secondary metabolites, its synthesis is likely also regulated by transcription factors. Although the biosynthetic pathway of patchouli alcohol has been characterized, the regulatory mechanism of patchouli alcohol biosynthesis has not been fully revealed.ResultsThis study combined the transcriptome data of patchouli leaves treated with different hormones and WGCNA to establish a coexpression network. The modules correlated to patchouli alcohol content were identified, and PcMYB25 played a crucial role in regulating patchouli alcohol biosynthesis. The overexpression of PcMYB25 can promote the expression of patchouli alcohol synthase (PTS), thereby increasing the content of patchouli alcohol.Conclusions This is the first report that MYB25 regulates the secondary metabolism of patchouli. These experimental results lay the foundation for further analysis of the regulatory mechanism of patchouli alcohol synthesis.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Jing-Quan Huang ◽  
Xin Fang

AbstractAmorpha-4,11-diene synthase (ADS) catalyzes the first committed step in the artemisinin biosynthetic pathway, which is the first catalytic reaction enzymatically and genetically characterized in artemisinin biosynthesis. The advent of ADS in Artemisia annua is considered crucial for the emergence of the specialized artemisinin biosynthetic pathway in the species. Microbial production of amorpha-4,11-diene is a breakthrough in metabolic engineering and synthetic biology. Recently, numerous new techniques have been used in ADS engineering; for example, assessing the substrate promiscuity of ADS to chemoenzymatically produce artemisinin. In this review, we discuss the discovery and catalytic mechanism of ADS, its application in metabolic engineering and synthetic biology, as well as the role of sesquiterpene synthases in the evolutionary origin of artemisinin.


2021 ◽  
Author(s):  
Xuanxuan Zhou ◽  
Xilin Wang ◽  
Huiling Huang ◽  
Daidi Wu ◽  
Xiaobing Wang ◽  
...  

Abstract Background Patchouli alcohol is an effective component of the medicinal plant patchouli. Similar to other secondary metabolites, its synthesis is also regulated by transcription factors. Although the biosynthetic pathway of patchouli alcohol has been characterized, the regulatory mechanism of patchouli alcohol has not been fully revealed. Results This study combined the transcriptome data of patchouli leaves treated with different hormones and WGCNA to complete the coexpression network. The modules related to patchouli alcohol were identified, and PcMYB25 played a crucial role in regulating patchouli alcohol biosynthesis. The overexpression of PcMYB25 can promote the expression of PTS , thereby increasing the content of patchouli alcohol. Conclusions This is the first reporter that MYB25 regulates the secondary metabolism of patchouli. These experimental results lay the foundation for further analysis of the regulatory mechanism of patchouli alcohol synthesis.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


2012 ◽  
Vol 58 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Jae-Hyung Jo ◽  
Hye-Young Seol ◽  
Yun-Bom Lee ◽  
Min-Hong Kim ◽  
Hyung-Hwan Hyun ◽  
...  

The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture. These results suggest that l-gluDH is the key enzyme in the conversion of α-KG to l-glutamate; therefore, prevention of this step could promote α-KG accumulation. The inactivation of ICL leads the carbon flow to α-KG by blocking the glyoxylate pathway. However, the disruption of gltB did not affect the biosynthesis of α-KG. Our results can be applied in the industrial production of α-KG by using C. glutamicum as producer.


1997 ◽  
Vol 325 (2) ◽  
pp. 331-337 ◽  
Author(s):  
Daniel BURTIN ◽  
Anthony J. MICHAEL

The activity of arginine decarboxylase (ADC), a key enzyme in plant polyamine biosynthesis, was manipulated in two generations of transgenic tobacco plants. Second-generation transgenic plants overexpressing an oat ADC cDNA contained high levels of oat ADC transcript relative to tobacco ADC, possessed elevated ADC enzyme activity and accumulated 10–20-fold more agmatine, the direct product of ADC. In the presence of high levels of the precursor agmatine, no increase in the levels of the polyamines putrescine, spermidine and spermine was detected in the transgenic plants. Similarly, the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were unchanged. No diversion of polyamine metabolism into the hydroxycinnamic acid–polyamine conjugate pool or into the tobacco alkaloid nicotine was detected. Activity of the catabolic enzyme diamine oxidase was the same in transgenic and control plants. The elevated ADC activity and agmatine production were subjected to a metabolic/physical block preventing increased, i.e. deregulated, polyamine accumulation. Overaccumulation of agmatine in the transgenic plants did not affect morphological development.


Sign in / Sign up

Export Citation Format

Share Document