scholarly journals Influence of Pore Size on the Optical and Electrical Properties of Screen PrintedTiO2Thin Films

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Dinfa Luka Domtau ◽  
Justus Simiyu ◽  
Elijah Omollo Ayieta ◽  
Godwin Mwebeze Asiimwe ◽  
Julius Mwakondo Mwabora

Influence of pore size on the optical and electrical properties of TiO2thin films was studied. TiO2thin films with different weight percentages (wt%) of carbon black were deposited by screen printing method on fluorine doped tin oxide (FTO) coated on glass substrate. Carbon black decomposed on annealing and artificial pores were created in the films. All the films were 3.2 µm thick as measured by a surface profiler. UV-VIS-NIR spectrophotometer was used to study transmittance and reflectance spectra of the films in the photon wavelength of 300–900 nm while absorbance was studied in the range of 350–900 nm. Band gaps and refractive index of the films were studied using the spectra. Reflectance, absorbance, and refractive index were found to increase with concentrations of carbon black. There was no significant variation in band gaps of films with change in carbon black concentrations. Transmittance reduced as the concentration of carbon black in TiO2increased (i.e., increase in pore size). Currents and voltages (I-V) characteristics of the films were measured by a 4-point probe. Resistivity (ρ) and conductivity (σ) of the films were computed from theI-Vvalues. It was observed that resistivity increased with carbon black concentrations while conductivity decreased as the pore size of the films increased.

2011 ◽  
Vol 1352 ◽  
Author(s):  
Jiguang Li ◽  
Lin Pu ◽  
Mool C. Gupta

ABSTRACTRecently, few tens of nanometer thin films of TiOx have been intensively studied in applications for organic solar cells as optical spacers, environmental protection and hole blocking. In this paper we provide initial measurements of optical and electrical properties of TiOx thin films and it’s applications in solar cell and sensor devices. The TiOx material was made through hydrolysis of the precursor synthesized from titanium isopropoxide, 2-methoxyethanol, and ethanolamine. The TiOx thin films of thickness between 20 nm to 120 nm were obtained by spin coating process. The refractive index of TiOx thin films were measured using an ellipsometric technique and an optical reflection method. At room temperature, the refractive index of TiOx thin film was found to be 1.77 at a wavelength of 600 nm. The variation of refractive index under various thermal annealing conditions was also studied. The increase in refractive index with high temperature thermal annealing process was observed, allowing the opportunity to obtain refractive index values between 1.77 and 2.57 at a wavelength 600 nm. The refractive index variation is due to the TiOx phase and density changes under thermal annealing.The electrical resistance was measured by depositing a thin film of TiOx between ITO and Al electrode. The electrical resistivity of TiOx thin film was found to be 1.7×107 Ω.cm as measured by vertical transmission line method. We have also studied the variation of electrical resistivity with temperature. The temperature coefficient of electrical resistance for 60 nm TiOx thin film was demonstrated as - 6×10-3/°C. A linear temperature dependence of resistivity between the temperature values of 20 – 100 °C was observed.The TiOx thin films have been demonstrated as a low cost solution processable antireflection layer for Si solar cells. The results indicate that the TiOx layer can reduce the surface reflection of the silicon as low as commonly used vacuum deposited Si3N4 thin films.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Hang Xu ◽  
Lili Wu ◽  
Wenwu Wang ◽  
Lixiang Zhang ◽  
Jingquan Zhang ◽  
...  

Zinc sulfide thin films have been deposited with hydrogen in Ar and Ar+H2atmosphere by radio frequency magnetron sputtering. The thickness, structural properties, composition, surface morphology, and optical and electrical properties of the films have been investigated. Effect of hydrogen on the properties of the film was studied. The results showed that hydrogen leads to better crystallinity and larger crystallite size of ZnS polycrystalline films. The band gaps of the films in Ar+H2are about 3.48 eV compared with 3.24 eV without hydrogen. It is also demonstrated that hydrogen can result in a better stoichiometric composition of the films.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 766
Author(s):  
Tihomir Car ◽  
Ivan Jakovac ◽  
Ivana Šarić ◽  
Sigrid Bernstorff ◽  
Maja Micetic

Structural, optical and electrical properties of Al+MoO3 and Au+MoO3 thin films prepared by simultaneous magnetron sputtering deposition were investigated. The influence of MoO3 sputtering power on the Al and Au nanoparticle formation and spatial distribution was explored. We demonstrated the formation of spatially arranged Au nanoparticles in the MoO3 matrix, while Al incorporates in the MoO3 matrix without nanoparticle formation. The dependence of the Au nanoparticle size and arrangement on the MoO3 sputtering power was established. The Al-based films show a decrease of overall absorption with an Al content increase, while the Au-based films have the opposite trend. The transport properties of the investigated films also are completely different. The resistivity of the Al-based films increases with the Al content, while it decreases with the Au content increase. The reason is a different transport mechanism that occurs in the films due to their different structural properties. The choice of the incorporated material (Al or Au) and its volume percentage in the MoO3 matrix enables the design of materials with desirable optical and electrical characteristics for a variety of applications.


Author(s):  
Daniel A. Fentahun ◽  
Alekha Tyagi ◽  
Sugandha Singh ◽  
Prerna Sinha ◽  
Amodini Mishra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document