scholarly journals Routing Algorithm with Uneven Clustering for Energy Heterogeneous Wireless Sensor Networks

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Zhang ◽  
Wei Xiong ◽  
Dezhi Han ◽  
Wei Chen ◽  
Jun Wang

Aiming at the “hotspots” problem in energy heterogeneous wireless sensor networks, a routing algorithm of heterogeneous sensor network with multilevel energies based on uneven clustering is proposed. In this algorithm, the energy heterogeneity of the nodes is fully reflected in the mechanism of cluster-heads’ election. It optimizes the competition radius of the cluster-heads according to the residual energy of the nodes. This kind of uneven clustering prolongs the lifetime of the cluster-heads with lower residual energies or near the sink nodes. In data transmission stage, the hybrid multihop transmission mode is adopted, and the next-hop routing election fully takes account of the factors of residual energies and the distances among the nodes. The simulation results show that the introduction of an uneven clustering mechanism and the optimization of competition radius of the cluster-heads significantly prolonged the lifetime of the network and improved the efficiency of data transmission.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jia Yanfei ◽  
Chen Guangda ◽  
Zhao Liquan

In heterogeneous wireless sensor networks, sensor nodes are randomly distributed in some regions. In some applications, they may be randomly distributed in different regions. Besides, nodes with the same type have almost the same probability to be selected as cluster head. The cluster head will consume much more energy to receive and transmit data than the other nodes. If nodes with little residual energy have been elected as cluster heads, it will affect the efficiency of the network due to its early death. An improved energy-efficient routing protocol is proposed for heterogeneous wireless sensor networks. Firstly, it supposes that the different types of nodes are distributed in different zones. Secondly, by improving the threshold, nodes with large residual energy have a greater possibility of becoming cluster heads. In the end, it designs a mixed data transmission method. The cluster heads of supper nodes and advance nodes directly transmit data to the base station. The normal nodes adopt single hops and multiple hops mixed methods to transmit data. This can minimize the energy of the communication from cluster head to base station. Simulation results show that this algorithm has achieved a longer lifetime for the wireless sensor network than stable election protocol and threshold-sensitive stable election protocol algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jianxia Guo

The research on wireless sensor networks has achieved a lot in recent years and some of the results have been put into practical applications, but with the increasing demand and requirements for wireless sensor networks, many old and new problems need to be solved urgently. In this paper, a data topology optimization algorithm based on local tree reconstruction for heterogeneous wireless sensor networks is proposed for data transmission in wireless sensor networks that are easily affected by external instabilities. This heterogeneous network can accomplish better data transmission; firstly, the nodes are divided into different layers according to the hop count of nodes in the network, and a certain proportion of relay nodes are selected for different layer nodes; then, different initial energy is set for different layer nodes, and since the data packets of different nodes have different sizes, the corresponding data aggregation coefficients are used in this paper according to the actual data requirements of the network during data transmission; finally, the topology of the tree is dynamically updated in real time during the operation of the network to extend the lifetime of the nodes. The simulation results verify that the proposed heterogeneous network topology evolution algorithm effectively extends the network lifetime and improves the utilization of nodes. This paper establishes a modified least-squares target localization model to achieve accurate 3D localization of targets in real scenes and proposes an optimal base station node selection strategy based on spectral clustering using the location distribution information of base station nodes in space. The simulation results show that the error of the terminal 3D coordinates calculated by the proposed algorithm is smaller than the real coordinates, and the error is smaller than other existing algorithms with the same simulation data.


2010 ◽  
Vol 40-41 ◽  
pp. 448-452 ◽  
Author(s):  
You Rong Chen ◽  
Li Yu ◽  
Qi Fen Dong ◽  
Zhen Hong

The network hub nodes consumed excessive energy and failed prematurely, thus it reduced the network lifetime. In order to solve the problem, distributed lifetime optimized routing algorithm (DLOR) for wireless sensor networks was proposed. Energy for transmitting data and neighbor node residual energy were considered comprehensively. Then new weight function was introduced and distributed asynchronous Bellman-Ford algorithm was also used to construct the shortest routing tree. Finally, data were gathered along the shortest routing tree to sink node. Simulation results show that DLOR algorithm can extend network lifetime and enable cost-effective energy consumption. Under certain conditions, DLOR algorithm outperforms PEDAP, GreedyDijkstra, LET, Ratio-w and Sum-w algorithms.


2018 ◽  
Vol 232 ◽  
pp. 04050
Author(s):  
Yong-wen Du ◽  
Zhang-min Wang ◽  
Gang Cai ◽  
Jun-hui Gong

In order to solve the problem of unbalanced load consumption of nodes for wireless sensor networks (WSNs), this paper proposes a load-balanced routing algorithm based on cluster heads optimization for wireless sensor network. The proposed algorithm first applies first-order wireless transmission model to calculate the optimal number of clusters, then calculate nodes competitiveness rating by fuzzy algorithm considering the residual energy of node and distance from the node to base station, cluster head selection uses unequal clustering algorithm according to the competitiveness of nodes. By node competitiveness and energy management mechanism which cooperate with each other to select the best cluster heads. Use connected optimization between clusters to search multi-hop paths base station for reducing energy consumption of node, and consider transmission energy consumption, residual energy, transmission distance and other factors. The experimental results show that the proposed algorithm compared with LEACH and UCDP algorithm, can balance loading and effectively extend the life cycle of wireless sensor network.


Author(s):  
Jun Wang ◽  
Yanhui Xu ◽  
Li Li ◽  
Yansui Du ◽  
Liang Zhao

In this paper, a secure and low energy dynamic slicing algorithm, namely, Improved D-SMART (IM-D-SMART) based on the Data Aggregation Protocol on Slice Mix Aggregate (D-SMART) is proposed to improve the security and confidentiality of wireless sensor networks and reduce the energy consumption of nodes in data collection and transmission in wireless sensor networks. According to the importance of data, the residual energy of nodes and the relative density of nodes, the data are dynamically partitioned to improve the D-SMART algorithm. Simultaneously, sending negative number splicing is used to compensate for the loss caused by the collision of data transmission between nodes. The simulation results show that IM-D-SMART outperforms D-SMART in terms of computation, privacy and communication cost.


2011 ◽  
Vol 474-476 ◽  
pp. 828-833
Author(s):  
Wen Jun Xu ◽  
Li Juan Sun ◽  
Jian Guo ◽  
Ru Chuan Wang

In order to reduce the average path length of the wireless sensor networks (WSNs) and save the energy, in this paper, the concept of the small world is introduced into the routing designs of WSNs. So a new small world routing protocol (SWRP) is proposed. By adding a few short cut links, which are confined to a fraction of the network diameter, we construct a small world network. Then the protocol finds paths through recurrent propagations of weak and strong links. The simulation results indicate that SWRP reduces the energy consumption effectively and the average delay of the data transmission, which leads to prolong the lifetime of both the nodes and the network.


2017 ◽  
Vol 13 (04) ◽  
pp. 45 ◽  
Author(s):  
Liping LV

<p class="0abstract"><span lang="EN-US">Wireless sensor network is a new field of computer science and technology research. It has a very broad application prospects. In order to improve the network survival time, it is very important to design efficient energy-constrained routing protocols. In this paper, we studied the characteristics of wireless sensor networks, and analyzed the design criteria of sensor network routing algorithms. In view of the shortcomings of traditional algorithms, we proposed an energy-aware multi-path algorithm. When selecting a data transmission path, the energy-aware multi-path algorithm can avoid nodes with low energy levels. At the same time, it takes the remaining energy of the node and the number of hops as one of the measures of the path selection. The multi-path routing algorithm realized the low energy consumption of the data transmission path, thus effectively prolonging the network lifetime. Compared with the traditional algorithm, the results show that our method has high reliability and energy efficiency.</span></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Fengyin Li ◽  
Pei Ren ◽  
Guoyu Yang ◽  
Yuhong Sun ◽  
Yilei Wang ◽  
...  

Advances in machine learning (ML) in recent years have enabled a dizzying array of applications such as data analytics, autonomous systems, and security diagnostics. As an important part of the Internet of Things (IoT), wireless sensor networks (WSNs) have been widely used in military, transportation, medical, and household fields. However, in the applications of wireless sensor networks, the adversary can infer the location of a source node and an event by backtracking attacks and traffic analysis. The location privacy leakage of a source node has become one of the most urgent problems to be solved in wireless sensor networks. To solve the problem of source location privacy leakage, in this paper, we first propose a proxy source node selection mechanism by constructing the candidate region. Secondly, based on the residual energy of the node, we propose a shortest routing algorithm to achieve better forwarding efficiency. Finally, by combining the proposed proxy source node selection mechanism with the proposed shortest routing algorithm based on the residual energy, we further propose a new, anonymous communication scheme. Meanwhile, the performance analysis indicates that the anonymous communication scheme can effectively protect the location privacy of the source nodes and reduce the network overhead.


Sign in / Sign up

Export Citation Format

Share Document