Shooting Down the Server Front-End Bottleneck

2020 ◽  
Vol 38 (3-4) ◽  
pp. 1-30
Author(s):  
Rakesh Kumar ◽  
Boris Grot

The front-end bottleneck is a well-established problem in server workloads owing to their deep software stacks and large instruction footprints. Despite years of research into effective L1-I and BTB prefetching, state-of-the-art techniques force a trade-off between metadata storage cost and performance. Temporal Stream prefetchers deliver high performance but require a prohibitive amount of metadata to accommodate the temporal history. Meanwhile, BTB-directed prefetchers incur low cost by using the existing in-core branch prediction structures but fall short on performance due to BTB’s inability to capture the massive control flow working set of server applications. This work overcomes the fundamental limitation of BTB-directed prefetchers, which is capturing a large control flow working set within an affordable BTB storage budget. We re-envision the BTB organization to maximize its control flow coverage by observing that an application’s instruction footprint can be mapped as a combination of its unconditional branch working set and, for each unconditional branch, a spatial encoding of the cache blocks around the branch target. Effectively capturing a map of the application’s instruction footprint in the BTB enables highly effective BTB-directed prefetching that outperforms the state-of-the-art prefetchers by up to 10% for equivalent storage budget.

Author(s):  
Harold O. Fried ◽  
Loren W. Tauer

This article explores how well an individual manages his or her own talent to achieve high performance in an individual sport. Its setting is the Ladies Professional Golf Association (LPGA). The order-m approach is explained. Additionally, the data and the empirical findings are presented. The inputs measure fundamental golfing athletic ability. The output measures success on the LPGA tour. The correlation coefficient between earnings per event and the ability to perform under pressure is 0.48. The careers of golfers occur on the front end of the age distribution. There is a classic trade-off between the inevitable deterioration in the mental ability to handle the pressure and experience gained with time. The ability to perform under pressure peaks at age 37.


2012 ◽  
Vol 81 ◽  
pp. 65-74 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Paola Farinelli ◽  
Roberto Sorrentino

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.


Author(s):  
Miguel Bordallo López

Computer vision can be used to increase the interactivity of existing and new camera-based applications. It can be used to build novel interaction methods and user interfaces. The computing and sensing needs of this kind of applications require a careful balance between quality and performance, a practical trade-off. This chapter shows the importance of using all the available resources to hide application latency and maximize computational throughput. The experience gained during the developing of interactive applications is utilized to characterize the constraints imposed by the mobile environment, discussing the most important design goals: high performance and low power consumption. In addition, this chapter discusses the use of heterogeneous computing via asymmetric multiprocessing to improve the throughput and energy efficiency of interactive vision-based applications.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 1-20
Author(s):  
Geun Sik Kim ◽  
Kai Liu ◽  
Flynn Carson ◽  
Seung Wook Yoon ◽  
Meenakshi Padmanathan

IPD technology was originally developed as a way to replace bulky discrete passive components, but it¡¯s now gaining popularity in ESD/EMI protection applications, as well as in RF, high-brightness LED silicon sub-mounts, and digital and mixed-signal devices. Already well known as a key enabler of system-in-packages (SiPs), IPDs enable the assembly of increasingly complete and autonomous systems with the integration of diverse electronic functions such as sensors, RF transceivers, MEMS, power amplifiers, power management units, and digital processors. The application area for IPD will continue to evolve, especially as new packaging technology, such as flipchip, 3D stacking, wafer level packaging become available to provide vertical interconnections within the IPD. New applications like silicon interposers will become increasingly significant to the market. Currently the IPD market is being driven primarily by RF or wireless packages and applications including, but not limited to, cell phones, WiFi, GPS, WiMAX, and WiBro. In particular, applications and products in the emerging RF CMOS market that require a low cost, smaller size, and high performance are driving demand. In order to get right products in size and performance, packaging design and technology should be considered in device integration and implemented together in IPD designs. In addition, a comprehensive understanding of electrical and mechanical properties in component and system level design is important. This paper will highlight some of the recent advancements in SiP technology for IPD and integration as well as what is developed to address future technology requirements in IPD SiP solutions. The advantage and applications of SiP solution for IPD will be presented with several examples of IPD products. The design, assembly and packaging challenges and performance characteristics will be also discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Antonio Carlos Valdiero ◽  
Ivan Jr. Mantovani ◽  
Andrei Fiegenbaum ◽  
Giovani P. B. Dambroz ◽  
Luiz A. Rasia

The present work addresses the development of a pneumatically driven manufacturing cell for low cost automation applications. This cell can be used in innovative applications as a low cost alternative to increase production and quality in industry. The state of the art shows that technological advances in computing have made possible a drop in equipment prices, making them more accessible. The aim of this work is to develop automation through a classic methodology for a manufacturing cell to minimize errors and facilitate the sequential logic conception. This experimental prototype has been developed at the UNIJUI with financial support by public organizations and companies. Pneumatic actuator used in bench driven has the following advantages: its maintenance is easy and simple, is of relatively low cost, self-cooling properties, and good power density (power/dimension rate), and is fast acting with high acceleration and installation flexibility. However, there are difficulties of control logic due to the complex systems. The sequential controller strategy design considers the pneumatic system, experimental results, and performance of the proposed control strategy.


2012 ◽  
Author(s):  
N. Alexander ◽  
P. Frijlink ◽  
J. Hendricks ◽  
E. Limiti ◽  
S. Löffler ◽  
...  
Keyword(s):  
Low Cost ◽  

2020 ◽  
Vol 10 (18) ◽  
pp. 6222 ◽  
Author(s):  
Girts Bumanis ◽  
Jelizaveta Zorica ◽  
Diana Bajare

The potential of phosphogypsum (PG) as secondary raw material in construction industry is high if compared to other raw materials from the point of view of availability, total energy consumption, and CO2 emissions created during material processing. This work investigates a green hydraulic ternary system binder based on waste phosphogypsum (PG) for the development of sustainable high-performance construction materials. Moreover, a simple, reproducible, and low-cost manufacture is followed by reaching PG utilization up to 50 wt.% of the binder. Commercial gypsum plaster was used for comparison. High-performance binder was obtained and on a basis of it foamed lightweight material was developed. Low water-binder ratio mixture compositions were prepared. Binder paste, mortar, and foamed binder were used for sample preparation. Chemical, mineralogical composition and performance of the binder were evaluated. Results indicate that the used waste may be successfully employed to produce high-performance binder pastes and even mortars with a compression strength up to 90 MPa. With the use of foaming agent, lightweight (370–700 kg/m3) foam concrete was produced with a thermal conductivity from 0.086 to 0.153 W/mK. Water tightness (softening coefficient) of such foamed material was 0.5–0.64. Proposed approach represents a viable solution to reduce the environmental footprint associated with waste disposal.


Author(s):  
Zhihui Chen ◽  
Jianyao Huang ◽  
Weifeng Zhang ◽  
Yankai Zhou ◽  
Xuyang Wei ◽  
...  

N-type semiconducting polymers are important materials for modern electronics but limited in variety and performance. To design a new n-type polymer semiconductor requires a judicious trade-off between structural parameters involving...


Author(s):  
Jyh-Rong Lin ◽  
Yeung Yeung ◽  
Ruonan Wang ◽  
Bin Xin ◽  
Lydia Leung ◽  
...  

2009 ◽  
Vol 60-61 ◽  
pp. 198-201
Author(s):  
Li Tian ◽  
Wei Wang ◽  
Xiao Wei Liu ◽  
Ying Zhang ◽  
Shu Yi Ji

A new low cost high performance PMMA micropump, developed for microfluidic system, is presented. According to the orifice flow theory, a diffuser/nozzle structure is fabricated with precision milling process, and packaged with the film-sealing at the condition of thermal bonding process. The size parameter of the diffuser/nozzle structure is 2.5mm *150µm, 8° conical angle, the volume of PMMA micropump is 14×14×2.5 mm3. And experimental results show that the PMMA micropump can produce a maximum back pressure of 1906.1Pa and a maximum flow rate of 564µL/min under 220 V, 500Hz squired wave power supply.


Sign in / Sign up

Export Citation Format

Share Document