scholarly journals Green Synthesis of Gold Nanoparticles Using Aqueous Extract ofGarcinia mangostanaFruit Peels

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Kar Xin Lee ◽  
Kamyar Shameli ◽  
Mikio Miyake ◽  
Noriyuki Kuwano ◽  
Nurul Bahiyah Bt Ahmad Khairudin ◽  
...  

The synthesis of gold nanoparticles (Au-NPs) is performed by the reduction of aqueous gold metal ions in contact with the aqueous peel extract of plant,Garcinia mangostana(G. mangostana). An absorption peak of the gold nanoparticles is observed at the range of 540–550 nm using UV-visible spectroscopy. All the diffraction peaks at 2θ= 38.48°, 44.85°, 66.05°, and 78.00° that index to (111), (200), (220), and (311) planes confirm the successful synthesis of Au-NPs. Mostly spherical shape particles with size range of 32.96 ± 5.25 nm are measured using transmission electron microscopy (TEM). From the FTIR results, the peaks obtained are closely related to phenols, flavonoids, benzophenones, and anthocyanins which suggest that they may act as the reducing agent. This method is environmentally safe without the usage of synthetic materials which is highly potential in biomedical applications.

2021 ◽  
Vol 10 (1) ◽  
pp. 73-84
Author(s):  
Xuan-Truong Mai ◽  
Minh-Chien Tran ◽  
Anh-Quan Hoang ◽  
Phuc Dang-Ngoc Nguyen ◽  
Thi-Hiep Nguyen ◽  
...  

Abstract The extract from Celastrus hindsii (C. hindsii), a plant that naturally grows in the forests of several provinces of Vietnam, has been traditionally used as an alternative medicine for the treatment of inflammation because of its anticancer and antitumor properties. This study reported the green synthesis of stable gold nanoparticles (Au-NPs) derived from HAuCl4 using the extract of C. hindsii as reducing and capping agents. Their particle size could be controlled by adjusting the ratio of the extract to HAuCl4 solution used (1.25%, 2.5%, 3.75%, 5.0%, and 6.25%). The optimal ratio of the extract was 3.75% (Au-NPs-3.75%). The X-ray powder diffraction analysis demonstrated that the Au-NPs was successfully synthesized. Fourier-transform infrared spectroscopy result indicated the possible presence of phenolic acids and flavonoids (acting as reducing agents and potential natural antioxidants). Transmission electron microscopy images showed that the particle diameter of Au-NPs-3.75% varied between 13 and 53 nm (average: ∼30 nm) in its spherical shape. The biosynthesized Au-NPs-3.75% exhibited dose-dependent cytotoxicity against HeLa cells, and the inhibitory concentration (IC50) was 12.5 µg/mL at 48 h. Therefore, Au-NPs that were synthesized from environmentally friendly method without the presence of potentially toxic chemicals were highly possible in biomedical applications.


2017 ◽  
Vol 13 (1) ◽  
pp. 4628-4639
Author(s):  
A. M. Abdelghany ◽  
Mahrous. S. Meikhail ◽  
A. A. ALdhabi

Gold nanoparticles (Au NPs) and Silver nanoparticles (Ag NPs) ware prepared by “green” synthesis extraction using the Chenopodium murale leaf extract, the obtained (Ag NPs and Au NPs) were investigated by UV/Vis. absorption spectroscopy, transmission electron microscopy, Zetasizer, XRD. The plant extraction leads to produce nanoparticles of spherical shape with size range from 4 to 22 nm. Polyvinyl alcohol (PVA) and polyvinyl Pyrolidone (PVP) blend with mixed silver and gold nanoparticles were prepared by casting method. Amorphous feather of doping polymers blend was characterized by X-ray diffraction. Significant changes within the polymer matrix were monitored from infrared spectroscopy which indicates the interaction between polymer blend and mixed nanoparticles. Both indirect and direct optical energy gaps are calculated and discussed.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


2021 ◽  
Vol 25 (7) ◽  
pp. 1-7
Author(s):  
Fellyzra Elvya Pojol ◽  
Buong Woei Chieng ◽  
Keat Khim Ong ◽  
Rashid Jahwarhar Izuan Abd ◽  
Mohd Junaedy Osman ◽  
...  

Citrate reduction of gold (III) chloride trihydrate (HAuCl4) is commonly used method to synthesise citrate-capped gold nanoparticles (cit-AuNPs). In this study, the sequence of reagents addition was modified (“inverse” method) to synthesise smaller size of cit-AuNPs than the standard Turkevich method (“direct” method). Ultraviolet-visible spectroscopy (UV-vis) and field emission transmission electron microscopy (FETEM) confirmed the formation of cit-AuNPs. The cit-AuNPs synthesized using “inverse” method are smaller in size (14.0 ± 3.03 nm) with uniform spherical shape compared to “direct” method (23.5 ± 7.52 nm). Smaller particles size of cit-AuNPs provide higher efficiency and sensitivity for detection of methylphosphonic acid (MPA) via colorimetric incorporated with image processing with a linear range from 2.5 to 12.5 mM and a low detection limit of 6.28 mM at shorter detection period (24 to 30 s).


2011 ◽  
Vol 391-392 ◽  
pp. 400-403
Author(s):  
Dong Mei Zhao ◽  
Li Guo Sun ◽  
Li Li Lv ◽  
Jian Li

Quasi-spherical gold nanoparticles(Au NPs) prepared by trisodium citrate reduction of HAuCl4were dispersed into cellulose acetate(CA) ultra-fine fibers by electrospinning. The optical properties of Au NPs before and after electrospinning were measured by UV-vis spectrometer. The morphology and distribution of Au NPs in CA ultra-fine fibers were observed by transmission electron microscopy (TEM). The morphology and diameter of Au NPs/CA fibers were studied by scanning electron microscopy (SEM). The crystallinity change of CA fiber before and after adding Au NPs was characterized by X-ray diffraction (XRD).


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Namita Soni ◽  
Soam Prakash

Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicumorC. verumJ. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vectorAnopheles stephensiand filariasis vectorCulex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae ofAn. stephensiwere found highly susceptible to the synthesized AgNPs and AuNPs than theCx. quinquefasciatus. These results suggest that theC. zeylanicumsynthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.


2021 ◽  
Vol 8 (2) ◽  
pp. 59-74
Author(s):  
Abdulkadir Mohammed Noori Jassim ◽  
Gufran Mohammed Shafy ◽  
Mustafa Taha Mohammed ◽  
Safana Ahmed Farhan ◽  
Omar Mohammed Noori

In current research, the synthesis of gold nanoparticles was achieved via reducing of gold ions in aqueous solution with Garcinia mangostana (G. mangostana) peel extract. The optimum concentration of gold (Au) solution, concentration ratio of Au solution and extract, temperature, time and pH, the synthesized AuNPs (G. mangostana-gold nanoparticles) were studied by using UV-Vis, FT-IR, AAS, AFM, SEM and Zitasizer. The absorbance peak is noticed between 535-550 nm via UV-Vis spectroscopic method. The SEM, AFM analysis were proofed the particle as spherical in structure and their size between 15-100nm. Therefore, mechanism of AuNPs synthesis had been suggested. Also, the antibacterial activity was examined using different bacteria as well as free radical scavenging activity was tested using 1, 1-Diphenyl-2-picrylhydrazyl (DPPH). The AuNPs produced through biosynthesized method indicated a much elevated antioxidant activity as compared to peel extract of G. mangostana. Toxicity of the NPs and extract were tested via giving orally dose 50 mg/b.w. to mice. Diagnosis of the data (pathological changes) indicated that the AuNPs was non-toxic. The G. mangostana peel extract and AuNPs synthesized by this extract were converted to a cream and used as a wound healing cream. As a results, the AuNPs exhibited important role in wound healing progression compared to control, which may be attributed to their anti-inflammatory, antibacterial and antioxidant activities. Therefore, this research confirms its important use of AuNPs and can be utilized as promising agents for in the development of new drugs.


2018 ◽  
Vol 34 (5) ◽  
pp. 2305-2312 ◽  
Author(s):  
Shohifah Annur ◽  
Sri Juari Santosa ◽  
Nurul Hidayat Aprilita

We have developed the spherical gold nanoparticles (AuNPs) with different size at room temperature using L-ascorbic acid as a reducing agent. Controlling pH of L-ascorbic acid from 2.0 to 10.0 caused the decreasing of AuNPs size when measured using particle size analyzer. The alkaline condition leads to increase the reactivity of L-ascorbic acid even at room temperature. The homogeneous AuNPs were achieved even the synthesis was conducted at different pH of L-ascorbic acid (pH 2.0 to 12.0). The investigation using Transmission Electron Microscopy (TEM) confirmed that AuNPs performed a spherical shape. SEM-EDX measurement performed a strong characteristic peak of Au appeared at 2.0 keV. This research could be used to control of AuNPs size when synthesized at room temperature. The AuNPs obtained at optimum condition was stable up to 3 months.


2018 ◽  
Vol 14 (2) ◽  
pp. 5388-5405
Author(s):  
Hosam Salaheldin Ibrahim

Gold nanoparticles (Au NPs) was synthesized with Chitosan different molecular weight (MW) using  a microwave as a heating source. Since, Chitosan acts as a reducing and stabilizing agent. The as-synthesized Au NPs were characterized by transmission electron microscopy (TEM) images and selected area electron diffraction patterns (SAED). Furthermore, the Au NPs fabrication was ascertained by UV–Visible spectroscopy (UV–Vis) through the detection of the localized surface plasmon resonance (LSPR) characteristic peak, X-ray powder diffraction (XRD), and energy dispersive X-Ray Spectroscopy (EDS). The formation of the Au NPs was confirmed by the detection of a LSPR peak at 518–527 nm in the UV–Vis spectrum. In addition, the XRD studies depicted that the obtained Au NPs were highly crystalline with ‘face-centered’ cubic geometry. Moreover, TEM micrographs showed that the most Monodispersed AuNPs was synthesized with low molecular weight (LMW) Chitosan with particle size 4.48±0.09 nm. The synthesized Chitosan-Au nanocomposite exhibited an efficient catalytic property in the reduction of  two organic environmental pollutants which are, 4-nitrophenol (4-NP) and methyl orange (MO) dye in the presence of sodium borohydride (NaBH4).


2017 ◽  
Vol 4 (7) ◽  
pp. 170481 ◽  
Author(s):  
Gustavo A. Monti ◽  
Gabriela A. Fernández ◽  
N. Mariano Correa ◽  
R. Darío Falcone ◽  
Fernando Moyano ◽  
...  

Herein we describe the synthesis of gold nanoparticles (Au-NPs) in presence of sulphonated imidazolium salts [1,3-bis(2,6-diisopropyl-4-sodiumsulfonatophenyl)imidazolium ( L1 ), 1-mesityl-3-(3-sulfonatopropyl)imidazolium ( L2 ) and 1-(3-sulfonatopropyl)imidazolium ( L3 )] in water and in a confinement environment created by reverse micelles (RMs). The Au-NPs were characterized—with an excellent agreement between different techniques—by UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential. In homogeneous media, the Au-NPs interact with the imidazolium ring and the sulphonate groups were directed away from the NPs' surface. This fact is responsible for the Au-NPs' stability—over three months—in water. Based on the obtained zeta potential values we assume the degree of coverage of the Au-NPs by the imidazolium salts. In n -heptane/sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT)/water RMs, the Au-NPs formed in presence of sulphonated imidazolium salts present different patterns depending on the ligand used as stabilizer. Interestingly, the Au-NPs are more stable in time when the salts are present in AOT RMs (three weeks) in comparison with the same RMs system but in absence of ligands (less than an hour). Clearly, the sulphonated imidazolium salts are very effective Au-NPs stabilizers in a different medium and this generates a plus to be able to use them for multiple purposes.


Sign in / Sign up

Export Citation Format

Share Document