scholarly journals Parallel Robot for Lower Limb Rehabilitation Exercises

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Alireza Rastegarpanah ◽  
Mozafar Saadat ◽  
Alberto Borboni

The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators’ forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators’ forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg’s model placed on the robot. The results demonstrate the robot’s capability to perform a full range of various rehabilitation exercises.

Author(s):  
Bogdan Gherman ◽  
Iosif Birlescu ◽  
Paul Tucan ◽  
Calin Vaida ◽  
Adrian Pisla ◽  
...  

As the life span increases and the availability of physicians becomes more and more scarce, robotic rehabilitation for post-stroke patients becomes more and more demanding, especially due to the repeatability character of the rehabilitation exercises. Both lower and upper limb rehabilitation using robotic systems have proved to be very successful in different stages of the rehabilitation process, but only a few address the immediate (critical) post-stroke phase, especially when the patient is hemiplegic and is unable to stand. The paper presents the kinematic modelling, singularity analysis and gait simulation for a new 4-DOF parallel robot named RECOVER used for lower limb rehabilitation for bedridden patients. The robotic system has been designed for the mobilization of the lower limb, namely the following motions: the hip and knee flexion and the plantar adduction/abduction and flexion/dorsiflexion. The kinematics has been studied and the singularity configurations have been determined to achieve a failsafe rehabilitation robot. Numerical simulations prove that the system can be used for gait training exercises in safe conditions.


Author(s):  
Rafael J. Escarabajal ◽  
Fares J. Abu-Dakka ◽  
José L. Pulloquinga ◽  
Vicente Mata ◽  
Marina Vallés ◽  
...  

The design of rehabilitation exercises applied to sprained ankles requires extreme caution, regarding the trajectories and the speed of the movements that will affect the patient. This paper presents a technique that allows a 3-PRS parallel robot to control such exercises, consisting of dorsi/plantar flexion and inversion/eversion ankle movements. The work includes a position control scheme for the parallel robot in order to follow a reference trajectory for each limb with the possibility of stopping the exercise in mid-execution without control loss. This stop may be motivated by the forces that the robot applies to the patient, acting like an alarm mechanism. The procedure introduced here is based on Dynamic Movement Primitives (DMPs).


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Alireza Rastegarpanah ◽  
Mozafar Saadat

The aim of this study is to investigate the performance of a 6-DoF parallel robot in tracking the movement of the foot trajectory of a paretic leg during a single stride. The foot trajectories of nine patients with a paretic leg including both males and females have been measured and analysed by a Vicon system in a gait laboratory. Based on kinematic and dynamic analysis of a 6-DoF UPS parallel robot, an algorithm was developed in MATLAB to calculate the length of the actuators and their required forces during all trajectories. The workspace and singularity points of the robot were then investigated in nine different cases. A 6-DoF UPS parallel robot prototype with high repeatability was designed and built in order to simulate a single stride. Results showed that the robot was capable of tracking all of the trajectories with the maximum position error of 1.2 mm.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 277
Author(s):  
Doina Pisla ◽  
Iuliu Nadas ◽  
Paul Tucan ◽  
Stefan Albert ◽  
Giuseppe Carbone ◽  
...  

This paper is focused on the development of a control system, implemented on a parallel robot designed for the lower limb rehabilitation of bedridden stroke survivors. The paper presents the RECOVER robotic system kinematics, further implemented into the control system, which is described in terms of architecture and functionality. Through a battery of experimental tests, achieved in laboratory conditions using eight healthy subjects, the feasibility and functionality of the proposed robotic system have been validated, and the overall performance of the control system has been studied. The range of motion of each targeted joint has been recorded using a commercially available external sensor system. The kinematic parameters, namely the patient’s joints velocities and accelerations have been recorded and compared to the ones obtained using the virtual model, yielding a very small difference between them, which provides a validation of the RECOVER initial design, both in terms of mechanical construction and control system.


2020 ◽  
Vol 34 (08) ◽  
pp. 13229-13234
Author(s):  
Antonio Bevilacqua ◽  
Giovanni Ciampi ◽  
Rob Argent ◽  
Brian Caulfield ◽  
Tahar Kechadi

Autonomous biofeedback tools in support of rehabilitation patients are commonly built as multi-tier pipelines, where a segmentation algorithm is first responsible for isolating motion primitives, and then classification can be performed on each primitive. In this paper, we present a novel segmentation technique that integrates on-the-fly qualitative classification of physical movements in the process. We adopt Long Short-Term Memory (LSTM) networks to model the temporal patterns of a streaming multivariate time series, obtained by sampling acceleration and angular velocity of the limb in motion, and then we aggregate the pointwise predictions of each isolated movement using different boosting methods. We tested our technique against a dataset composed of four common lower-limb rehabilitation exercises, collected from heterogeneous populations (clinical and healthy). Experimental results are promising and show that combining segmentation and classification of orthopaedic movements is a valid method with many potential real-world applications.


2019 ◽  
Vol 28 (6) ◽  
pp. 544-551 ◽  
Author(s):  
Damien Moore ◽  
Adam I. Semciw ◽  
Jodie McClelland ◽  
Henry Wajswelner ◽  
Tania Pizzari

Context:The gluteus minimus (GMin) muscle consists of 2 uniquely oriented segments that have potential for independent function and have different responses to pathology and aging. For healthy young adults, it is unknown that which rehabilitation exercises specifically target the individual segments.Objective:To quantify segmental GMin activity for 6 common lower-limb rehabilitation exercises in healthy young adults and determine if significant differences exist in segmental activity levels between the exercises.Method:Six common lower-limb rehabilitation exercises were performed by 10 healthy young adults with fine-wire electromyography (EMG) electrodes inserted into the anterior and posterior segments of the GMin muscle.Main Outcome Measures:Electromyography signals were recorded, and median normalized exercise activity levels were reported and compared for each GMin segment across the 6 exercises.Results:High activity levels were generated in the anterior segment by the resisted hip abduction–extension exercise (51% maximum voluntary isometric contraction [MVIC]), whereas for the posterior segment, high activity levels were produced by the single-leg bridge (49% MVIC), the side-lie hip abduction (43% MVIC), the resisted hip abduction–extension exercise (43% MVIC), and the single-leg squat (40% MVIC). There were significant differences (P < .05) in the median electromyography activity levels for the anterior GMin segment but not for the posterior GMin segment across some of the exercises with large effect sizes.Conclusion:Targeted rehabilitation exercises graded by exercise intensity can be prescribed specifically for the anterior and posterior GMin segments to aid in restoration of hip function following injury or aging.


2019 ◽  
Vol 28 (8) ◽  
Author(s):  
Damien Moore ◽  
Tania Pizzari ◽  
Jodie McClelland ◽  
Adam I. Semciw

Context:Many different rehabilitation exercises have been recommended in the literature to target the gluteus medius (GMed) muscle based mainly on single-electrode, surface electromyography (EMG) measures. With the GMed consisting of 3 structurally and functionally independent segments, there is uncertainty on whether these exercises will target the individual segments effectively.Objective:To measure individual GMed segmental activity during 6 common, lower-limb rehabilitation exercises in healthy young adults, and determine if there are significant differences between the exercises for each segment.Method:With fine-wire EMG electrodes inserted into the anterior, middle, and posterior segments of the GMed muscle, 10 healthy young adults performed 6 common, lower-limb rehabilitation exercises.Main Outcome Measures:Recorded EMG activity was normalized, then reported and compared with median activity for each of the GMed segments across the 6 exercises.Results:For the anterior GMed segment, high activity was recorded for the single-leg squat (48% maximum voluntary isometric contraction [MVIC]), the single-leg bridge (44% MVIC), and the resisted hip abduction–extension exercise (41% MVIC). No exercises recorded high activity for the middle GMed segment, but for the posterior GMed segment very high activity was recorded by the resisted hip abduction–extension exercise (69% MVIC), and high activity was generated by the single-leg squat (48% MVIC) and side-lie hip abduction (43% MVIC). For each of the GMed segments, there were significant differences (P < .05) in the median EMG activity levels between some of the exercises and the side-lie clam with large effect sizes favoring these exercises over the side-lie clam.Conclusions:Open-chain hip abduction and single-limb support exercises appear to be effective options for recruiting the individual GMed segments with selection dependent on individual requirements. However, the side-lie clam does not appear to be effective at recruiting the GMed segments, particularly the anterior and middle segments.


Sign in / Sign up

Export Citation Format

Share Document