scholarly journals Sulfonanilide Derivatives in Identifying Novel Aromatase Inhibitors by Applying Docking, Virtual Screening, and MD Simulations Studies

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Shailima Rampogu ◽  
Minky Son ◽  
Chanin Park ◽  
Hyong-Ha Kim ◽  
Jung-Keun Suh ◽  
...  

Breast cancer is one of the leading causes of death noticed in women across the world. Of late the most successful treatments rendered are the use of aromatase inhibitors (AIs). In the current study, a two-way approach for the identification of novel leads has been adapted. 81 chemical compounds were assessed to understand their potentiality against aromatase along with the four known drugs. Docking was performed employing the CDOCKER protocol available on the Discovery Studio (DS v4.5). Exemestane has displayed a higher dock score among the known drug candidates and is labeled as reference. Out of 81 ligands 14 have exhibited higher dock scores than the reference. In the second approach, these 14 compounds were utilized for the generation of the pharmacophore. The validated four-featured pharmacophore was then allowed to screen Chembridge database and the potential Hits were obtained after subjecting them to Lipinski’s rule of five and the ADMET properties. Subsequently, the acquired 3,050 Hits were escalated to molecular docking utilizing GOLD v5.0. Finally, the obtained Hits were consequently represented to be ideal lead candidates that were escalated to the MD simulations and binding free energy calculations. Additionally, the gene-disease association was performed to delineate the associated disease caused by CYP19A1.

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Shailima Rampogu ◽  
Ayoung Baek ◽  
Minky Son ◽  
Amir Zeb ◽  
Chanin Park ◽  
...  

Progeria is a rare genetic disorder characterized by premature aging that eventually leads to death and is noticed globally. Despite alarming conditions, this disease lacks effective medications; however, the farnesyltransferase inhibitors (FTIs) are a hope in the dark. Therefore, the objective of the present article is to identify new compounds from the databases employing pharmacophore based virtual screening. Utilizing nine training set compounds along with lonafarnib, a common feature pharmacophore was constructed consisting of four features. The validated Hypo1 was subsequently allowed to screen Maybridge, Chembridge, and Asinex databases to retrieve the novel lead candidates, which were then subjected to Lipinski’s rule of 5 and ADMET for drug-like assessment. The obtained 3,372 compounds were forwarded to docking simulations and were manually examined for the key interactions with the crucial residues. Two compounds that have demonstrated a higher dock score than the reference compounds and showed interactions with the crucial residues were subjected to MD simulations and binding free energy calculations to assess the stability of docked conformation and to investigate the binding interactions in detail. Furthermore, this study suggests that the Hits may be more effective against progeria and further the DFT studies were executed to understand their orbital energies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3269 ◽  
Author(s):  
Lucas Defelipe ◽  
Juan Arcon ◽  
Carlos Modenutti ◽  
Marcelo Marti ◽  
Adrián Turjanski ◽  
...  

Simulations of molecular dynamics (MD) are playing an increasingly important role in structure-based drug discovery (SBDD). Here we review the use of MD for proteins in aqueous solvation, organic/aqueous mixed solvents (MDmix) and with small ligands, to the classic SBDD problems: Binding mode and binding free energy predictions. The simulation of proteins in their condensed state reveals solvent structures and preferential interaction sites (hot spots) on the protein surface. The information provided by water and its cosolvents can be used very effectively to understand protein ligand recognition and to improve the predictive capability of well-established methods such as molecular docking. The application of MD simulations to the study of the association of proteins with drug-like compounds is currently only possible for specific cases, as it remains computationally very expensive and labor intensive. MDmix simulations on the other hand, can be used systematically to address some of the common tasks in SBDD. With the advent of new tools and faster computers we expect to see an increase in the application of mixed solvent MD simulations to a plethora of protein targets to identify new drug candidates.


2021 ◽  
Author(s):  
Konstantinos Kalamatianos

In this study a computer-aided approach to de novo design of chemical entities with drug-like properties against the SARS-CoV-2 Spike protein bound to ACE2 is presented. A structure-based de novo drug design tool LIGANN was used to produce complementary ligand shapes to the SARS-CoV-2 Spike protein (6M0J). The obtained ligand structures - potential drug candidates – were optimized and virtually screened. Hit ligands were considered all that showed initial binding energy scores ≤ -9.0 kcal.mol-1 for the protein. These compounds were tested for drug-likeness (Lipinski’s rule and BOILED Permeation Predictive Model). All satisfying the criteria were re-optimized (geometry & frequencies) at the HF-3c33 level of theory and virtually screened against 6M0J. Molecular dynamics (MD) simulations were used to assess the structural stability of selected 6M0J/novel compound complexes. Synthetic pathways for selected compounds from commercially available starting materials are proposed.


2020 ◽  
Author(s):  
Rameez Jabeer Khan ◽  
Rajat Kumar Jha ◽  
Ekampreet Singh ◽  
Monika Jain ◽  
Gizachew Muluneh Amera ◽  
...  

<div>The recent COVID-19 pandemic caused by SARS-CoV-2 has recorded a high number of infected people across the globe. The notorious nature of the virus makes it necessary for us to identify promising therapeutic agents in a time-sensitive manner. The current study utilises an <i>in silico</i> based drug repurposing approach to identify potential drug candidates targeting non-structural protein 15 (NSP15), i.e. a uridylate specific endoribonuclease of SARS-CoV-2</div><div>which plays an indispensable role in RNA processing and viral immune evasion from the host immune system. NSP15 was screened against an in-house library of 123 antiviral drugs obtained from the DrugBank database from which three promising drug candidates were identified based on their estimated free energy of binding (<i>ΔG</i>), estimated inhibition constant (<i>Ki</i>), the orientation of drug molecules in the active site and the key interacting residues of</div><div>NSP15. The MD simulations were performed for the selected NSP15-drug complexes along with free protein to mimic on their physiological state. The binding free energies of the selected NSP15-drug complexes were also calculated using the trajectories of MD simulations of NSP15-drug complexes through MM/PBSA (Molecular Mechanics with Poisson-Boltzmann and surface area solvation) approach where NSP15-Simeprevir (-242.559 kJ/mol) and NSP15-Paritaprevir (-149.557 kJ/mol) exhibited the strongest binding affinities. Together with the results of molecular docking, global dynamics, essential dynamics and binding free energy analysis, we propose that Simeprevir and Paritaprevir are promising drug candidates for the inhibition of NSP15 and could act as potential therapeutic agents against SARS-CoV-2.</div>


2020 ◽  
Author(s):  
Amit Kumawat ◽  
Sadanandam Namsani ◽  
Debabrata Pramanik ◽  
Sudip Roy ◽  
Jayant K. Singh

Since the onset of global pandemic, the most focused research currently in progress is the development of vaccine candidates and clinical trials of existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-19. Here, we investigate the drug repurposing strategies to counteract the coronavirus infection which involves several potential targetable host proteins involved in viral replication and disease progression. We report the high throughput analysis of literature-derived repurposing drug candidates that can be used to target the genetic regulators known to interact with viral proteins based on experimental and interactome studies. In this work we have performed integrated molecular docking followed by molecular dynamics (MD) simulations and free energy calculations through an expedite insilico process where the number of screened candidates reduces sequentially at every step based on physicochemical information. We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) binds to the other gene transcription and translation regulatory protein with higher affinity and may harbour potential for therapeutic uses.<br>


2019 ◽  
Author(s):  
Panagiotis Lagarias ◽  
Kerry Barkan ◽  
Eva Tzortzini ◽  
Eleni Vrontaki ◽  
Margarita Stampelou ◽  
...  

<p>Adenosine A<sub>3 </sub>receptor (A<sub>3</sub>R), is a promising drug target against cancer cell proliferation. Currently there is no experimentally determined structure of A<sub>3</sub>R. Here, we have investigate a computational model, previously applied successfully for agonists binding to A<sub>3</sub>R, using molecular dynamic (MD) simulations, Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) binding free energy calculations. Extensive computations were performed to explore the binding profile of O4-{[3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbonyl}-2-methyl-1,3-thiazole-4-carbohydroximamide (K18) to A<sub>3</sub>R. K18 is a new specific and competitive antagonist at the orthosteric binding site of A<sub>3</sub>R, discovered using virtual screening and characterized pharmacologically in our previous studies. The most plausible binding conformation for the dichlorophenyl group of K18 inside the A<sub>3</sub>R is oriented towards trans-membrane helices (TM) 5 and 6, according to the MM-PBSA and MM-GBSA binding free energy calculations, and by the previous results obtained by mutating residues of TM5, TM6 to alanine which reduce antagonist potency. The results from 14 site-directed mutagenesis experiments were interpreted using MD simulations and MM-GBSA calculations which show that the relative binding free energies of the mutant A<sub>3</sub>R - K18 complexes compare to the WT A<sub>3</sub>R are in agreement with the effect of the mutations, i.e. the reduction, maintenance or increase of antagonist potency. We show that when the residues V169<sup>5.30</sup>, M177<sup>5.38</sup>, I249<sup>6.54</sup> involved in direct interactions with K18 are mutated to alanine, the mutant A<sub>3</sub>R - K18 complexes reduce potency, increase the RMSD value of K18 inside the binding area and the MM-GBSA binding free energy compared to the WT A<sub>3</sub>R complex. Our computational model shows that other mutant A<sub>3</sub>R complexes with K18, including directly interacting residues, i.e. F168<sup>5.29</sup>A, L246<sup>6.51</sup>A, N250<sup>6.55</sup>A complexes with K18 are not stable. In these complexes of A<sub>3</sub>R mutated in directly interacting residues one or more of the interactions between K18 and these residues are lost. In agreement with the experiments, the computations show that, M174<sup>5.35</sup> a residue which does not make direct interactions with K18 is critical for K18 binding. A striking results is that the mutation of residue V169<sup>5.30</sup> to glutamic acid maintained antagonistic potency. This effect is in agreement with the binding free energy calculations and it is suggested that is due to K18 re-orientation but also to the plasticity of A<sub>3</sub>R binding area. The mutation of direct interacting L90<sup>3.32</sup> in the low region and the non-directly interacting L264<sup>7.35</sup> to alanine in the middle region increases the antagonistic potency, suggesting that chemical modifications of K18 can be applied to augment antagonistic potency. The calculated binding energies Δ<i>G</i><sub>eff</sub> values of K18 against mutant A<sub>3</sub>Rs displayed very good correlation with experimental potencies (pA<sub>2</sub> values). These results further approve the computational model for the description of K18 binding with critical residues of the orthosteric binding area which can have implications for the design of more effective antagonists based on the structure of K18.</p>


2020 ◽  
Vol 16 (5) ◽  
pp. 605-617 ◽  
Author(s):  
Kauê Santana da Costa ◽  
João M. Galúcio ◽  
Deivid Almeida de Jesus ◽  
Guelber Cardoso Gomes ◽  
Anderson Henrique Lima e Lima ◽  
...  

Background : Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an enzyme that isomerizes phosphorylated serine or threonine motifs adjacent to proline residues. Pin1 has important roles in several cellular signaling pathways, consequently impacting the development of multiple types of cancers. Methods: Based on the previously reported inhibitory activity of pentacyclic triterpenoids isolated from the gum resin of Boswellia genus against Pin1, we designed a computational experiment using molecular docking, pharmacophore filtering, and structural clustering allied to molecular dynamics (MD) simulations and binding free energy calculations to explore the inhibitory activity of new triterpenoids against Pin1 structure. Results: Here, we report different computational evidence that triterpenoids from neem (Azadirachta indica A. Juss), such as 6-deacetylnimbinene, 6-Oacetylnimbandiol, and nimbolide, replicate the binding mode of the Pin1 substrate peptide, interacting with high affinity with the binding site and thus destabilizing the Pin1 structure. Conclusion: Our results are supported by experimental data, and provide interesting structural insights into their molecular mechanism of action, indicating that their structural scaffolds could be used as a start point to develop new inhibitors against Pin1.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Takahiro Yoshizawa ◽  
Ken Uchibori ◽  
Mitsugu Araki ◽  
Shigeyuki Matsumoto ◽  
Biao Ma ◽  
...  

AbstractApproximately 15–30% of patients with lung cancer harbor mutations in the EGFR gene. Major EGFR mutations (>90% of EGFR-mutated lung cancer) are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs). Many uncommon EGFR mutations have been identified, but little is known regarding their characteristics, activation, and sensitivity to various EGFR-TKIs, including allosteric inhibitors. We encountered a case harboring an EGFR-L747P mutation, originally misdiagnosed with EGFR-del19 mutation using a routine diagnostic EGFR mutation test, which was resistant to EGFR-TKI gefitinib. Using this minor mutation and common EGFR-activating mutations, we performed the binding free energy calculations and microsecond-timescale molecular dynamic (MD) simulations, revealing that the L747P mutation considerably stabilizes the active conformation through a salt-bridge formation between K745 and E762. We further revealed why several EGFR inhibitors, including the allosteric inhibitor, were ineffective. Our computational structural analysis strategy would be beneficial for future drug development targeting the EGFR minor mutations.


Sign in / Sign up

Export Citation Format

Share Document