scholarly journals The New Tapered Fiber Connector and the Test of Its Error Rate and Coupling Characteristics

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Qinggui Hu ◽  
Chengzhong Li

Since the fiber core is very small, the communication fiber connector requires high precision. In this paper, the effect of lateral deviation on coupling efficiency of fiber connector is analyzed. Then, considering the fact that optical fiber is generally used in pairs, one for transmitting data and the other for receiving, the novel directional tapered communication optical fiber connector is designed. In the new connector, the structure of the fiber head is tapered according to the signal transmission direction. In order to study the performance of the new connector, several samples were made in the laboratory of corporation CDSEI and two testing experiments were done. The experiment results show that compared with the traditional connector, for the same lateral deviation, the coupling efficiency of the tapered connector is higher and the error rate is lower.

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7435
Author(s):  
Amaia Berganza ◽  
Eneko Arrospide ◽  
Josu Amorebieta ◽  
Joseba Zubia ◽  
Gaizka Durana

In this paper we report on the theoretical analysis and fabrication of a dual-core microstructured polymer optical fiber (mPOF) and demonstrate how the coupling characteristics of a dual-core mPOF may be a key factor to assess the quality of the fabrication process. The coupling characteristics of this fiber have been tested and, for comparison purposes, simulations regarding the effects of inaccuracies during the manufacturing process were carried out to evaluate the fabrication quality. Results indicate that theoretical, simulation and experimental data are in good agreement, which highlights the uniformity of the microstructure along the fiber and the quality of its fabrication process. In fact, the manufactured mPOF reached a coupling efficiency up to 95.26%, which makes this mPOF appealing for applications in which highly efficient power couplers are required.


2014 ◽  
Vol 624 ◽  
pp. 712-714
Author(s):  
Pei Yun Ao

According to the structural characteristics of optical fiber connector Ceramic insert core, this article analyzed the structure technology of it. Based on Mold wizard module and Pro/Moldsign module. We conducted injection mold design of optical fiber connector ceramic insert core; Put forward the flow characteristics of zirconia powder injection feeding and binder, lubricants and other additive formulation.


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


Author(s):  
Yih-Tun Tseng ◽  
Jhong-Bin Huang ◽  
Che-Hsin Lin ◽  
Chin-Lung Chen ◽  
Wood-Hi Cheng

The GI (graded-index) POFs (Plastic optical fibers), which has been proven to reach distances as long as 1 km at 1.25 Gb/s has a relatively low numerical aperture . Therefore, the efficient coupling of GI POFs to the light source has become critical to the power budget in the system. Efficient coupling for a POFs system normally involves either a separate lens or the direct formation of the lens at the end of the fiber. Forming the lens-like structure directly on the fiber end is preferred for simplicity of fabrication and packaging, such as polishing and fusion, combine different fibers with the cascaded fiber method and hydroflouride (HF) chemical etching. These approaches are well established, but applicable only to glass. Optical assembly architecture for multichannel fibers and optical devices is critical to optical fiber interconnections. Multichannel fiber-pigtail laser diode (LD) modules have potential for supporting higher data throughput and longer transmission distances. However, to be of practical use, these modules must be more precise. This work proposes and manufactures lensed plastic optical fibers (LPOF) array. This novel manipulation can be utilized to fabricate an aspherical lens on a fiber array after the UV curing of the photo-sensitive polymer; the coupling efficiency (CE) is increased and exceeds 47% between the LD array and the fiber array.


2020 ◽  
Vol 49 (9) ◽  
pp. 906001-906001
Author(s):  
宋超鑫 Chao-xin SONG ◽  
雷小华 Xiao-hua LEI ◽  
谢磊 Lei XIE ◽  
刘显明 Xian-ming LIU ◽  
陈伟民 Wei-min CHEN

2011 ◽  
Vol 145 ◽  
pp. 109-113
Author(s):  
Jao Hwa Kuang ◽  
Tsung Pin Hung ◽  
Shian Huan Chiou ◽  
Chao Ming Hsu

When fabricating laser diode transceiver modules, the coupling efficiency can be improved via a laser hammering process, in which additional, calculated spot welds are performed at key locations within the package in order to compensate for post-weld shift. The present study performs a numerical investigation into the post-weld-shift compensation of a butterfly laser module package incorporating a lensed optical fiber and a laser diode with a central wavelength of 980 nm. In performing the simulations, the deformation of the package components during the welding process is modeled using Marc finite element software. Furthermore, the laser power coupling efficiency is estimated using the commercial Zemax optical design program. It is shown that the numerical predictions for the coupling power in the laser diode transceiver module are in good agreement with the experimental results. The optimal welding sequence which minimizes the post-weld shift of the optical fiber relative to the laser diode is determined. It is shown that the corresponding coupling efficiency is equal to 69%. Finally, it is shown that by performing an optimized laser hammering process, the coupling efficiency can be improved to around 99%.


Sign in / Sign up

Export Citation Format

Share Document