scholarly journals Stair Climbing Control for 4-DOF Tracked Vehicle Based on Internal Sensors

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Daisuke Endo ◽  
Atsushi Watanabe ◽  
Keiji Nagatani

In search-and-rescue missions, multi-degrees-of-freedom (DOF) tracked robots that are equipped with subtracks are commonly used. These types of robots have superior locomotion performance on rough terrain. However, in teleoperated missions, the performance of tracked robots depends largely on the operators’ ability to control every subtrack appropriately. Therefore, an autonomous traversal function can significantly help in the teleoperation of such robots. In this paper, we propose a planning and control method for 4-DOF tracked robots climbing up/down known stairs automatically based on internal sensors. Experimental results obtained using mockup stairs verify the effectiveness of the proposed method.


1967 ◽  
Vol 3 (3) ◽  
pp. 231-234 ◽  
Author(s):  
E. K. Sashina ◽  
�. I. Shklovskii ◽  
A. B. Miller ◽  
Yu. S. Chentsov




2019 ◽  
Vol 16 (04) ◽  
pp. 1950012 ◽  
Author(s):  
Mircea Hulea ◽  
Adrian Burlacu ◽  
Constantin-Florin Caruntu

This paper details an intelligent motion planning and control approach for a one-degree of freedom joint of a robotic arm that can be used to implement anthropomorphic robotic hands. This intelligent control method is based on bio-inspired electronic neural networks and contractile artificial muscles implemented with shape memory alloy (SMA) actuators. The spiking neural network (SNN) includes several excitatory neurons that naturally determine the contraction force of the actuators, and unevenly distributed inhibitory neurons that regulate the excitatory activity. To validate the proposed concept, the experiments highlight the motion planning and control of a single-joint robotic arm. The results show that the electronic neural network is able to intelligently activate motion and hold with high precision the mobile link to the target positions even if the arm is slightly loaded. These results are encouraging for the development of improved biologically plausible neural structures that are able to control simultaneously multiple muscles.



2019 ◽  
Vol 10 (1) ◽  
pp. 274 ◽  
Author(s):  
Javier Gejo García ◽  
Sergio Gallego-García ◽  
Manuel García-García

At the moment, many engineer-to-order manufacturers are under pressure, the overcapacity in many sectors erodes prices and many companies, especially in Europe have gone into recent years in bankruptcy. Due to the increasing competition as well as the new customer requirements, the internal processes of an ETO company play an essential role in order to achieve a unique selling proposition (USP). Therefore this paper exposes how the production planning and control of an engineer-to-order manufacturer can be designed in order to increase its OTD (order-to-delivery) rate as well as decrease the WIP (work-in-progress) and the production lead times. To prove the optimized planning logic, it was applied in a simulation case study and based on the results; the conclusions about its potential are derived.



2008 ◽  
Vol 20 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Yuji Asai ◽  
◽  
Yasuhiro Chiba ◽  
Keisuke Sakaguchi ◽  
Naoki Bushida ◽  
...  

We propose a simple hopping mechanism using vibration of a two-degrees-of-freedom (2-DOF) system for a fast stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in springs and travels quickly using wheels mounted on its lower body. The trajectories of bodies during hopping change based on mechanical design parameters such as reduced mass of the two bodies, the mass ratio between the upper and lower bodies, and spring constant, and control parameters such as initial contraction of the spring and wire tension. This property allows the robot to quickly and economically climb stairs and land softly without complex control. In this paper, we propose a mathematical model of the robot and investigate required tread length for continuous hopping to climb a flight of stairs. Furthermore, we demonstrate fast stair-climbing and soft landing for a flight of stairs in experiments.



2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Martin Udengaard ◽  
Karl Iagnemma

An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose. To date, nearly all designs and analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain. In this paper, an investigation of the design and control of an omnidirectional mobile robot for use in rough terrain is presented. Kinematic and geometric properties of the active split offset caster drive mechanism are investigated along with system and subsystem design guidelines. An optimization method is implemented to explore the design space. The use of this method results in a robot that has higher mobility than a robot designed using engineering judgment. A simple kinematic controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented. It is shown in simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain.



Author(s):  
Tetsuro Miyazaki ◽  
Takuya Iijima ◽  
Kazushi Sanada

This paper proposes a design and control method of a supporting arm which reduces factory worker load. The supporting arm is a robot manipulator, which is driven by pneumatic cylinders, and is attached to the worker’s hip. In some situation, the factory worker is forced to work with an uncomfortable posture. By using the supporting arm, the worker leg loads are relaxed, and the worker posture is stabilized. To support 50 % weight of the worker, the link system of the supporting arm is designed, and the pneumatic cylinders for actuation are selected. There are two required specifications: (i) support force is sufficient for supporting target load, and (ii) desired stiffness characteristics in the hip height direction can be obtained. The support force is controlled by a two degrees of freedom control system to satisfy the required specifications. An experimental system of the supporting arm was developed, and its performance was evaluated by experiments. As a result, the experimental system shows capability of supporting the target weight and controllability of stiffness.



Author(s):  
B S Evans ◽  
P N Brett

Flexible automation for the handling of rigid materials has been available for many years, but similar systems are not as yet available for the handling of non-rigid materials such as doughs. The properties of this type of material require careful control of gripping and manipulation forces to prevent the product from deforming out of tolerance during handling. This paper describes a computationally efficient model that has been developed for use in the planning and control of gripping and manipulation strategies for dough-like materials. In addition to describing the model and the way in which it would be used in an automated handling environment, experimental results demonstrating the accuracy of the model in predicting the behaviour of three doughs are presented.



Sign in / Sign up

Export Citation Format

Share Document