scholarly journals Loss of PI3K p110αin the Adipose Tissue Results in Infertility and Delayed Puberty Onset in Male Mice

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Victoria L. Boughton Nelson ◽  
Ariel L. Negrón ◽  
Inefta Reid ◽  
Justin A. Thomas ◽  
Leon Yang ◽  
...  

Deletion of PI3K catalytic subunit p110αin adipose tissue (aP2-Cre/p110αflx/flx,α−/− hereafter) results in increased adiposity, glucose intolerance, and liver steatosis. Because this endocrine organ releases hormones like leptin, which are important in reproductive physiology, we investigated the reproductive phenotype ofα−/− males. Compared to controls,α−/− males displayed delayed onset of puberty accompanied by a reduction in plasma LH levels and testicular weight. At postnatal day 30,α−/− mice exhibited normal body weight but elevated fasted plasma leptin levels. Testicular leptin gene expression was increased, whereas expression of the cholesterol transporter StAR and of P450 cholesterol side chain cleavage enzyme was decreased. Adultα−/− males were infertile and exhibited hyperandrogenemia with normal basal LH, FSH, and estradiol levels. However, neither sperm counts nor sperm motility was different between genotypes. The mRNA levels of leptin and of 17-beta-dehydrogenase 3, and enzyme important for testosterone production, were significantly higher in the testis of adultα−/− males. The mRNA levels of ERα, an important regulator of intratesticular steroidogenesis, were lower in the testis of adult and peripubertalα−/− males. We propose that chronic hyperleptinemia contributes to the negative impact that disrupting PI3K signaling in adipocytes has on puberty onset, steroidogenesis, and fertility in males.

2003 ◽  
Vol 176 (1) ◽  
pp. 151-161 ◽  
Author(s):  
V Sriraman ◽  
MR Sairam ◽  
AJ Rao

The relative role of LH and FSH in regulation of differentiation of Leydig cells was assessed using an ethane 1,2-dimethylsulfonate (EDS)-treated rat model in which endogenous LH or FSH was neutralized from day 3 to day 22 following EDS treatment. Serum testosterone and the in vitro response of the purified Leydig cells to human chorionic gonadotropin (hCG) was monitored. In addition RNA was isolated from the Leydig cells to monitor the steady-state mRNA levels by RT-PCR for 17alpha-hydroxylase, side chain cleavage enzyme, steroidogenic acute regulatory protein (StAR), LH receptor, estrogen receptor (ER-alpha) and cyclophilin (internal control). Serum testosterone was undetected and the isolated Leydig cells secreted negligible amount of testosterone on stimulation with hCG in the group of rats that were treated with LH antiserum following EDS treatment. RT-PCR analysis revealed the absence of message for cholesterol side chain cleavage enzyme and 17alpha-hydroxylase although ER-alpha and LH receptor mRNA could be detected, indicating the presence of undifferentiated precursor Leydig cells. In contrast, the effects following deprival of endogenous FSH were not as drastic as seen following LH neutralization. Deprival of endogenous FSH in EDS-treated rats led to a significant decrease in serum testosterone and in vitro response to hCG by the Leydig cells. Also, there was a significant decrease in the steady-state mRNA levels of 17alpha-hydroxylase, cholesterol side chain cleavage enzyme, LH receptor and StAR as assessed by a semiquantitative RT-PCR. These results establish that while LH is obligatory for the functional differentiation of Leydig cells, repopulation of precursor Leydig cells is independent of LH, and also unequivocally establish an important role for FSH in regulation of Leydig cell function.


2001 ◽  
Vol 168 (3) ◽  
pp. 475-485 ◽  
Author(s):  
PJ Simmonds ◽  
ID Phillips ◽  
KR Poore ◽  
ID Coghill ◽  
IR Young ◽  
...  

To further understand the relative roles of the pituitary gland and ACTH in the regulation of mRNAs encoding proteins that are essential for adrenal development, we investigated the effects of, first, an ACTH infusion and labour in intact fetuses and, secondly, the effect of an ACTH infusion to fetuses with and without a pituitary gland, on the relative abundance of the mRNA encoding for the ACTH receptor (MC2R), steroidogenic factor 1 (SF-1), cholesterol side-chain cleavage enzyme (P450(scc)), 3beta-hydroxysteroid dehydrogenase (3betaHSD) and 17alpha-hydroxylase (P450(C17)) in the fetal adrenal gland. ACTH(1-24) infusion (14.7 pmol/kg per h) to intact fetuses was without effect on the abundance of mRNA encoding MC2R and SF-1, irrespective of whether the infusion was given for 18 (115-132 days of gestation) or 32 days (115 days to term (147 days of gestation)). Hypophysectomy (HX) did not alter the expression of MC2R mRNA; however, the abundance of SF-1 mRNA fell by approximately 50% following the removal of the pituitary gland. ACTH(1-24) infusion to HX fetuses failed to restore levels of SF-1 mRNA to that seen in intact animals. P450(scc) and 3betaHSD mRNAs were increased by ACTH(1-24) infusion for 18 days in intact animals, although no effects of the infusion were seen on P450(C17) mRNA levels. For all three of these mRNAs, there was a significant increase in their abundance between 132 days of gestation and term in intact fetuses. By term, ACTH(1-24) infusion was without any additional effect on their abundance. HX decreased the expression of P450(scc), 3betaHSD and P450(C17) mRNAs, while ACTH(1-24) infusion to HX fetuses increased the expression of these mRNAs to levels seen in intact animals. There were significant correlations between the abundance of the mRNA for P450(scc), 3betaHSD and P450(C17), but not MC2R and SF-1, and premortem plasma cortisol concentrations. These results emphasise the importance of the pituitary gland and ACTH in the regulation of the enzymes involved in adrenal steroidogenesis. Factors in addition to ACTH may also play some role, as the infusion was not always effective in increasing the abundance of the mRNAs. Surprisingly, the mRNA for MC2R and SF-1 did not appear to be regulated by ACTH in the late-gestation ovine fetus, though a pituitary-dependent factor may be involved in the regulation of SF-1 mRNA abundance.


2009 ◽  
Vol 42 (5) ◽  
pp. 407-413 ◽  
Author(s):  
Ariadni Spyroglou ◽  
Jenny Manolopoulou ◽  
Sibylle Wagner ◽  
Martin Bidlingmaier ◽  
Martin Reincke ◽  
...  

Aldosterone is synthesized acutely from the zona glomerulosa cells upon stimulation by the renin–angiotensin–aldosterone system. Several enzymes are involved in this steroidogenic process including the steroidogenic acute regulatory protein (StAR), P450 side chain cleavage enzyme (Cyp11a1), and aldosterone synthase (Cyp11b2) which has been demonstrated to be transcriptionally regulated by the nuclear transcription factors NGF1-B and Nurr1. We investigated the short time transcriptional regulation of these genes in wild-type mice at 10 min intervals for 1 h following application of 0.2 nmol angiotensin II (ANGII) or sodium chloride in comparison sham injections. Using real-time PCR a fast upregulation of adrenal Cyp11b2 expression (53±5% increase over baseline) could be observed 10 min after sham injection which was accompanied by a transient increase in aldosterone secretion while StAR and Cyp11a1 upregulation was delayed and more sustained. ANGII caused an increase of StAR and Cyp11a1 expression similar to that observed after sham injection while Cyp11b2 upregulation was more pronounced (10 min, 236±39%) and reflected ANGII induced stimulation of aldosterone output. Sodium challenge was followed by a sustained reduction of all three genes examined (Cyp11b2, 20 min, −63±6%) which was accompanied by a significant suppression of aldosterone secretion detectable after 60 min. While increases in NGF1-B mRNA levels were similar between the treatment groups, Nurr1 expression levels were induced only upon ANGII administration. These data suggest that acute regulation of aldosterone synthesis is accompanied by fast transcriptional modulation of steroidogenic enzymes and transcription factors that are likely to be involved in aldosterone secretion.


Gene ◽  
1987 ◽  
Vol 57 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Kelly M. McMasters ◽  
Leon A. Dickson ◽  
Rebecca V. Shamy ◽  
Kathleen Robischon ◽  
Gordon J. Macdonald ◽  
...  

2021 ◽  
Author(s):  
Marjorie Reyes ◽  
Lorena González ◽  
Kevin Ibeas ◽  
Rubén Cereijo ◽  
Siri D. Taxerås ◽  
...  

Context The endocrine and immunological properties of subcutaneous vs. visceral adipose tissue (sWAT and vWAT, respectively) have turned a milestone in the study of metabolic diseases. The cytokine S100A4 is increased in obesity and has a role in adipose tissue dysfunction. However, the cellular source and its potential role in hepatic damage in obesity has not been elucidated. Objective We aim to study the regulation of S100A4 in immune cells present in sWAT and vWAT, as well as its potential role as a circulating marker of hepatic inflammation and steatosis. Design A cohort of 60 patients with obesity and distinct metabolic status was analyzed. CD11b+ myeloid cells and T cells were isolated from sWAT and vWAT by magnetic-activating cell sorting, and RNA was obtained. S100A4 gene expression was measured, and correlation analysis with clinical data was performed. Liver biopsies were obtained from 20 patients, and S100A4 circulating levels were measured to check the link with hepatic inflammation and steatosis. Results S100A4 gene expression was strongly upregulated in sWAT- vs. vWAT-infiltrated CD11b+ cells, but this modulation was not observed in T cells. S100A4 mRNA levels from sWAT (and not from vWAT) CD11b+ cells positively correlated with glycemia, triglycerides, TNF-α gene expression and proliferation markers. Finally, circulating S100A4 directly correlated with liver steatosis and hepatic inflammatory markers. Conclusion Our data suggest that sWAT-infiltrated CD11b+ cells could be a major source of S100A4 in obesity. Moreover, our correlations identify circulating S100A4 as a potential novel biomarker of hepatic damage and steatosis.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A688-A688
Author(s):  
Delanie B Macedo ◽  
Ana Paula Abreu ◽  
Melissa Magnuson ◽  
Han Kyeol Kim ◽  
Alessandra Mancini ◽  
...  

Abstract The timing of puberty in females is highly sensitive to metabolic cues and energy reserves. Epidemiologic studies indicate a relationship between increased body mass index and earlier puberty in girls. In contrast, a significant delay in puberty and menarche is seen in girls who have diminished body fat. Multiple peripheral hormones are responsible for transmitting metabolic information to hypothalamic kisspeptin and GnRH neurons. Sufficient levels of leptin, an adipose tissue hormone with a permissive/stimulatory effect on the metabolic control of reproduction, are required for puberty onset, reproductive function and fertility. Loss-of-function mutations in the Delta-like homolog 1 (DLK1) gene have been described in girls with central precocious puberty (CPP) and increased body fat, suggesting a link between metabolism and reproduction. DLK1 is a paternally expressed gene located on human chromosome 14q32.2 in a locus associated with Temple syndrome (TS). Dlk1 knockout mice display pre- and postnatal growth retardation, a phenotype that overlaps with TS. We have shown that Dlk1 deficient female mice achieved puberty at the same age as wild type mice, despite a considerably lower body weight (BW) (“relative precocious puberty”). To date, the mechanisms of action of Dlk1 in determining pubertal onset remain unknown. In this study, we used a Dlk1 deficient mouse model to explore the influence of Dlk1 in the regulation of reproductive axis, particularly its effects on leptin and/or kisspeptin, a major excitatory factor of the reproductive axis. By RT-qPCR and Western blot, we confirmed that both Dlk1 mRNA and protein were undetectable in the mediobasal hypothalamus (MBH) of Dlk+/p- (which inherited the mutant allele from their father), but it was present in Dlk+/+ mice. White adipose tissue (WAT) and blood were collected from Dlk+/p- and Dlk+/+ female mice at postnatal day (PND) 26, and MBH tissue was obtained from both groups at PND 15, 26 and 60. Quantification of total WAT showed no significant difference between Dlk1+/p-and Dlk1+/+ mice (p=0.8) at PND26, even after correction for total BW (p=0.29). Hypothalamic mRNA levels of Kiss1 and Socs3, a downstream mediator of leptin signaling, were measured by RT-qPCR. Kiss1 mRNA levels were significantly reduced in the MBH of Dlk1+/p- mice at PND15 and PND60, but no significant difference was found at PND 26. Socs3 expression was significantly lower in Dlk1+/p- mice (p=0.04) as a result of the reduced circulating levels of leptin (ELISA) observed in these mice at PDN26 (p=0.01). Our findings suggest that the absence of Dlk1 may attenuate the metabolic effects of low body weight and low leptin levels on puberty onset and that, as seen in humans, DLK1 is an important link between body weight and pubertal development. Finally, Dlk1 deficiency leads to activation of the reproductive axis despite lower levels of kisspeptin.


2012 ◽  
Vol 31 (4) ◽  
pp. 407-415 ◽  
Author(s):  
Sunny O. Abarikwu ◽  
Ebenezer O. Farombi ◽  
Aditya B. Pant

We sought to explore the mechanism by which kolaviron (Kol) protects against atrazine (ATZ)-induced toxicity of cultured interstitial Leydig cells (ILCs). In our experiments, treatment with Kol improved Leydig cell viability and significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Further investigations revealed a reduction in glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione-S-transferase (GST) and elevation of superoxide dismutase 1 (SOD-1) and superoxide dismutase 2 (SOD-2) as measured by messenger RNA (mRNA) expression. Additionally, the ATZ-induced alterations in the mRNA transcript copy numbers of steroidogenesis genes: steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme (CYP11A1), and 3β-hydroxysteroid dehydrogenase (3β-HSD) were shifted toward the control values by Kol. Taken together, these findings indicate that Kol protects ILCs from ATZ-induced toxicity via the reduction in ROS and MDA levels and induce normalization of mRNA levels of all the tested genes.


2013 ◽  
pp. 1-1
Author(s):  
Alisdair Boag ◽  
Kerry McLaughlin ◽  
Mike Christie ◽  
Peter Graham ◽  
Harriet Syme ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1435
Author(s):  
Aimilia Papathanasiou ◽  
Fotios Spyropoulos ◽  
Zoe Michael ◽  
Kyoung Joung ◽  
Despina Briana ◽  
...  

Pulmonary hypertension (PH) is associated with meta-inflammation related to obesity but the role of adipose tissue in PH pathogenesis is unknown. We hypothesized that adipose tissue-derived metabolic regulators are altered in human and experimental PH. We measured circulating levels of fatty acid binding protein 4 (FABP-4), fibroblast growth factor -21 (FGF-21), adiponectin, and the mRNA levels of FABP-4, FGF-21, and peroxisome proliferator-activated receptor γ (PPARγ) in lung tissue of patients with idiopathic PH and healthy controls. We also evaluated lung and adipose tissue expression of these mediators in the three most commonly used experimental rodent models of pulmonary hypertension. Circulating levels of FABP-4, FGF-21, and adiponectin were significantly elevated in PH patients compared to controls and the mRNA levels of these regulators and PPARγ were also significantly increased in human PH lungs and in the lungs of rats with experimental PH compared to controls. These findings were coupled with increased levels of adipose tissue mRNA of genes related to glucose uptake, glycolysis, tricarboxylic acid cycle, and fatty acid oxidation in experimental PH. Our results support that metabolic alterations in human PH are recapitulated in rodent models of the disease and suggest that adipose tissue may contribute to PH pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document