scholarly journals Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Carole Guedj ◽  
David Meunier ◽  
Martine Meunier ◽  
Fadila Hadj-Bouziane

The locus coeruleus-norepinephrine (LC-NE) system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.

2021 ◽  
Author(s):  
Silvia Minosse ◽  
Eliseo Picchi ◽  
Francesca Di Giuliano ◽  
Loredana Sarmati ◽  
Elisabetta Teti ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Yi Liu ◽  
Zhuoyuan Li ◽  
Xueyan Jiang ◽  
Wenying Du ◽  
Xiaoqi Wang ◽  
...  

Background: Evidence suggests that subjective cognitive decline (SCD) individuals with worry have a higher risk of cognitive decline. However, how SCD-related worry influences the functional brain network is still unknown. Objective: In this study, we aimed to explore the differences in functional brain networks between SCD subjects with and without worry. Methods: A total of 228 participants were enrolled from the Sino Longitudinal Study on Cognitive Decline (SILCODE), including 39 normal control (NC) subjects, 117 SCD subjects with worry, and 72 SCD subjects without worry. All subjects completed neuropsychological assessments, APOE genotyping, and resting-state functional magnetic resonance imaging (rs-fMRI). Graph theory was applied for functional brain network analysis based on both the whole brain and default mode network (DMN). Parameters including the clustering coefficient, shortest path length, local efficiency, and global efficiency were calculated. Two-sample T-tests and chi-square tests were used to analyze differences between two groups. In addition, a false discovery rate-corrected post hoc test was applied. Results: Our analysis showed that compared to the SCD without worry group, SCD with worry group had significantly increased functional connectivity and shortest path length (p = 0.002) and a decreased clustering coefficient (p = 0.013), global efficiency (p = 0.001), and local efficiency (p <  0.001). The above results appeared in both the whole brain and DMN. Conclusion: There were significant differences in functional brain networks between SCD individuals with and without worry. We speculated that worry might result in alterations of the functional brain network for SCD individuals and then result in a higher risk of cognitive decline.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Andreas Hahn ◽  
Michael Breakspear ◽  
Lucas Rischka ◽  
Wolfgang Wadsak ◽  
Godber M Godbersen ◽  
...  

The ability to solve cognitive tasks depends upon adaptive changes in the organization of whole-brain functional networks. However, the link between task-induced network reconfigurations and their underlying energy demands is poorly understood. We address this by multimodal network analyses integrating functional and molecular neuroimaging acquired concurrently during a complex cognitive task. Task engagement elicited a marked increase in the association between glucose consumption and functional brain network reorganization. This convergence between metabolic and neural processes was specific to feedforward connections linking the visual and dorsal attention networks, in accordance with task requirements of visuo-spatial reasoning. Further increases in cognitive load above initial task engagement did not affect the relationship between metabolism and network reorganization but only modulated existing interactions. Our findings show how the upregulation of key computational mechanisms to support cognitive performance unveils the complex, interdependent changes in neural metabolism and neuro-vascular responses.


2018 ◽  
Vol 26 (2) ◽  
pp. 188-200 ◽  
Author(s):  
Ismail Koubiyr ◽  
Mathilde Deloire ◽  
Pierre Besson ◽  
Pierrick Coupé ◽  
Cécile Dulau ◽  
...  

Background: There is a lack of longitudinal studies exploring the topological organization of functional brain networks at the early stages of multiple sclerosis (MS). Objective: This study aims to assess potential brain functional reorganization at rest in patients with CIS (PwCIS) after 1 year of evolution and to characterize the dynamics of functional brain networks at the early stage of the disease. Methods: We prospectively included 41 PwCIS and 19 matched healthy controls (HCs). They were scanned at baseline and after 1 year. Using graph theory, topological metrics were calculated for each region. Hub disruption index was computed for each metric. Results: Hub disruption indexes of degree and betweenness centrality were negative at baseline in patients ( p < 0.05), suggesting brain reorganization. After 1 year, hub disruption indexes for degree and betweenness centrality were still negative ( p < 0.00001), but such reorganization appeared more pronounced than at baseline. Different brain regions were driving these alterations. No global efficiency differences were observed between PwCIS and HCs either at baseline or at 1 year. Conclusion: Dynamic changes in functional brain networks appear at the early stages of MS and are associated with the maintenance of normal global efficiency in the brain, suggesting a compensatory effect.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chunyan Li ◽  
Xiaomin Pang ◽  
Ke Shi ◽  
Qijia Long ◽  
Jinping Liu ◽  
...  

BackgroundIn recent years, imaging technologies have been rapidly evolving, with an emphasis on the characterization of brain structure changes and functional imaging in patients with autoimmune encephalitis. However, the neural basis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and its linked cognitive decline is unclear. Our research aimed to assess changes in the functional brain network in patients with anti-NMDAR encephalitis and whether these changes lead to cognitive impairment.MethodsTwenty-one anti-NMDAR encephalitis patients and 22 age-, gender-, and education status-matched healthy controls were assessed using resting functional magnetic resonance imaging (fMRI) scanning and neuropsychological tests, including the Hamilton Depression Scale (HAMD24), the Montreal Cognitive Assessment (MoCA), and the Hamilton Anxiety Scale (HAMA). A functional brain network was constructed using fMRI, and the topology of the network parameters was analyzed using graph theory. Next, we extracted the aberrant topological parameters of the functional network as seeds and compared causal connectivity with the whole brain. Lastly, we explored the correlation of aberrant topological structures with deficits in cognitive performance.ResultsRelative to healthy controls, anti-NMDAR encephalitis patients exhibited decreased MoCA scores and increased HAMA and HAMD24 scores (p &lt; 0.05). The nodal clustering coefficient and nodal local efficiency of the left insula (Insula_L) were significantly decreased in anti-NMDAR encephalitis patients (p &lt; 0.05 following Bonferroni correction). Moreover, anti-NMDAR encephalitis patients showed a weakened causal connectivity from the left insula to the left inferior parietal lobe (Parietal_Inf_L) compared to healthy controls. Conversely, the left superior parietal lobe (Parietal_sup_L) exhibited an enhanced causal connectivity to the left insula in anti-NMDAR encephalitis patients compared to controls. Unexpectedly, these alterations were not correlated with any neuropsychological test scores.ConclusionThis research describes topological abnormalities in the functional brain network in anti-NMDAR encephalitis. These results will be conducive to understand the structure and function of the brain network of patients with anti-NMDAR encephalitis and further explore the neuropathophysiological mechanisms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Satoru Hiwa ◽  
Shogo Obuchi ◽  
Tomoyuki Hiroyasu

Working memory (WM) load-dependent changes of functional connectivity networks have previously been investigated by graph theoretical analysis. However, the extraordinary number of nodes represented within the complex network of the human brain has hindered the identification of functional regions and their network properties. In this paper, we propose a novel method for automatically extracting characteristic brain regions and their graph theoretical properties that reflect load-dependent changes in functional connectivity using a support vector machine classification and genetic algorithm optimization. The proposed method classified brain states during 2- and 3-back test conditions based upon each of the three regional graph theoretical metrics (degree, clustering coefficient, and betweenness centrality) and automatically identified those brain regions that were used for classification. The experimental results demonstrated that our method achieved a >90% of classification accuracy using each of the three graph metrics, whereas the accuracy of the conventional manual approach of assigning brain regions was only 80.4%. It has been revealed that the proposed framework can extract meaningful features of a functional brain network that is associated with WM load from a large number of nodal graph theoretical metrics without prior knowledge of the neural basis of WM.


Neurology ◽  
2017 ◽  
Vol 89 (17) ◽  
pp. 1764-1772 ◽  
Author(s):  
Massimo Filippi ◽  
Silvia Basaia ◽  
Elisa Canu ◽  
Francesca Imperiale ◽  
Alessandro Meani ◽  
...  

Objective:To investigate functional brain network architecture in early-onset Alzheimer disease (EOAD) and behavioral variant frontotemporal dementia (bvFTD).Methods:Thirty-eight patients with bvFTD, 37 patients with EOAD, and 32 age-matched healthy controls underwent 3D T1-weighted and resting-state fMRI. Graph analysis and connectomics assessed global and local functional topologic network properties, regional functional connectivity, and intrahemispheric and interhemispheric between-lobe connectivity.Results:Despite similarly extensive cognitive impairment relative to controls, patients with EOAD showed severe global functional network alterations (lower mean nodal strength, local efficiency, clustering coefficient, and longer path length), while patients with bvFTD showed relatively preserved global functional brain architecture. Patients with bvFTD demonstrated reduced nodal strength in the frontoinsular lobe and a relatively focal altered functional connectivity of frontoinsular and temporal regions. Functional connectivity breakdown in the posterior brain nodes, particularly in the parietal lobe, differentiated patients with EOAD from those with bvFTD. While EOAD was associated with widespread loss of both intrahemispheric and interhemispheric functional correlations, bvFTD showed a preferential disruption of the intrahemispheric connectivity.Conclusions:Disease-specific patterns of functional network topology and connectivity alterations were observed in patients with EOAD and bvFTD. Graph analysis and connectomics may aid clinical diagnosis and help elucidate pathophysiologic differences between neurodegenerative dementias.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiangbin Chen ◽  
Mengting Liu ◽  
Zhibing Wu ◽  
Hao Cheng

Recent studies have demonstrated structural and functional alterations in Parkinson’s disease (PD) with mild cognitive impairment (MCI). However, the topological patterns of functional brain networks in newly diagnosed PD patients with MCI are unclear so far. In this study, we used functional magnetic resonance imaging (fMRI) and graph theory approaches to explore the functional brain network in 45 PD patients with MCI (PD-MCI), 22 PD patients without MCI (PD-nMCI), and 18 healthy controls (HC). We found that the PD-MCI, PD-nMCI, and HC groups exhibited a small-world architecture in the functional brain network. However, early-stage PD-MCI patients had decreased clustering coefficient, increased characteristic path length, and changed nodal centrality in the default mode network (DMN), control network (CN), somatomotor network (SMN), and visual network (VN), which might contribute to factors for MCI symptoms in PD patients. Our results demonstrated that PD-MCI patients were associated with disrupted topological organization in the functional network, thus providing a topological network insight into the role of information exchange in the underlying development of MCI symptoms in PD patients.


2021 ◽  
Vol 11 (8) ◽  
pp. 1066
Author(s):  
Han Li ◽  
Qizhong Zhang ◽  
Ziying Lin ◽  
Farong Gao

Epilepsy is a chronic neurological disorder which can affect 65 million patients worldwide. Recently, network based analyses have been of great help in the investigation of seizures. Now graph theory is commonly applied to analyze functional brain networks, but functional brain networks are dynamic. Methods based on graph theory find it difficult to reflect the dynamic changes of functional brain network. In this paper, an approach to extracting features from brain functional networks is presented. Dynamic functional brain networks can be obtained by stacking multiple functional brain networks on the time axis. Then, a tensor decomposition method is used to extract features, and an ELM classifier is introduced to complete epilepsy prediction. In the prediction of epilepsy, the accuracy and F1 score of the feature extracted by tensor decomposition are higher than the degree and clustering coefficient. The features extracted from the dynamic functional brain network by tensor decomposition show better and more comprehensive performance than degree and clustering coefficient in epilepsy prediction.


2022 ◽  
Vol 355 ◽  
pp. 03042
Author(s):  
Rui Zhang ◽  
Ziyang Wang ◽  
Yu Liu

With the development of EEG analysis technology, researchers have gradually explored the correlation between personality trait (such as Big Five personality) and EEG. However, there are still many challenges in model construction. In this paper, we tried to classify the people with different organizational commitment personality trait through EEG. Firstly, we organized the participants to complete the organizational commitment questionnaire and recorded their resting state EEG. We divided 10 subjects into two classes (positive and negative) according to the questionnaire scores. Then, various EEG features including power spectral density, microstate, functional brain network and nonlinear features from segmented EEG sample were extracted as the input of different machine learning classifiers. Next, several evaluation metrics were used to evaluate the results of the cross-validation experiment. Finally, the results show that the EEG power in α band, the weighted clustering coefficient of functional brain network and the Permutation Entropy of EEG are relatively good features for this classification task. Furthermore, the highest classification accuracy rate can reach 79.9% with 0.87 AUC (the area under the ROC). The attempts in this paper may serve as the basis for our future research.


Sign in / Sign up

Export Citation Format

Share Document