scholarly journals Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Chen ◽  
Linlin Zhang ◽  
Yilai Shu ◽  
Liping Chen ◽  
Min Zhu ◽  
...  

Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB.

2021 ◽  
Author(s):  
Huayuan Liu ◽  
Caiyun Liu ◽  
Mengya Wang ◽  
Dongxu Sun ◽  
Pengcheng Zhu ◽  
...  

Abstract Purpose: In the present study, we aimed to find the target of Tanshinone IIA (Tan-IIA) in Cholangiocarcinoma by network pharmacology-based prediction and investigate the possible mechanism through experimental verification. Methods: In this study, we combined Tan-IIA-specific and Cholangiocarcinoma-specific targets with protein-protein interactions (PPI) to construct a Tan-IIA targets-Cholangiocarcinoma network, and network pharmacology approach was applied to identify potential targets and mechanisms of Tan-IIA in the treatment of Cholangiocarcinoma. The anti-cancer effects of Tan-IIA were investigated by using subcutaneous tumorigenic model in nude mice and in the human Cholangiocarcinoma cell lines in vitro. Results: Our results showed that Tan-IIA treatment considerably suppressed the proliferation and migration of Cholangiocarcinoma cells while inducing apoptosis of Cholangiocarcinoma cells. Western blot results demonstrated that the expression of PI3K, p-Akt, p-mTOR, and mTOR were inhibited by Tan-IIA. Meanwhile, After treatment with Tan-IIA, the level of Bcl2 was downregulated and cleaved caspase-3 expression increased. Further studies revealed that the anticancer effects of Tan-IIA were severely mitigated by pretreatment with a PI3K agonist.Conclusion: Our research provides a new anticancer strategy and strengthens support for the use of Tan-IIA as an anticancer drug for the treatment of CCA.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Mengxue Sun ◽  
Jie Hua ◽  
Gaoshuang Liu ◽  
Peiyun Huang ◽  
Ningsheng Liu ◽  
...  

Abstract Objective: The present study is designed to evaluate the anti-tumor effects of myrrh on human gastric cancer both in vitro and in vivo. Methods: The gastric cancer cell proliferation was determined by MTT assay. Apoptosis was measured by flow cytometry and Hoechst 33342 staining. Wound healing was performed to evaluate the effects of myrrh on the migration. COX-2, PCNA, Bcl-2, and Bax expressions were detected by Western blot analysis. A xenograft nude mice model of human gastric cancer was established to evaluate the anti-cancer effect of myrrh in vivo. Results: Myrrh significantly inhibited cellular proliferation, migration, and induced apoptosis in vitro as well as inhibited tumor growth in vivo. In addition, myrrh inhibited the expression of PCNA, COX-2, and Bcl-2 as well as increased Bax expression in gastric cancer cells. Conclusion: Myrrh may inhibit the proliferation and migration of gastric cancer cells, as well as induced their apoptosis by down-regulating the expression of COX-2.


2019 ◽  
Author(s):  
Ni Tan ◽  
Bo Zhu ◽  
Hong Shu ◽  
Yi‑Feng Tao ◽  
Jun‑Rong Wu ◽  
...  

2020 ◽  
Vol 529 (4) ◽  
pp. 1216-1224
Author(s):  
Wenbin Song ◽  
Yule Chen ◽  
Guodong Zhu ◽  
Hongjun Xie ◽  
Zhishang Yang ◽  
...  

2020 ◽  
Vol 98 (3) ◽  
pp. 338-344 ◽  
Author(s):  
Yanyan Wu ◽  
Qing-Jun Bi ◽  
Rui Han ◽  
Yajie Zhang

In this work, we investigated the expression pattern and regulatory function of long noncoding RNA (lncRNA) KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in breast cancer. We found that KCNQ1OT1 was significantly upregulated in breast cancer cell lines. In lentiviral-transduced BT-549 and HCC1599 cells, KCNQ1OT1 knockdown impaired cancer cell functions, including in vitro proliferation and migration, and in vivo transplant growth. The possible sponging target of KCNQ1OT1, human microRNA-107 (hsa-miR-107), was confirmed to be bound by KCNQ1OT1, and was upregulated in breast cancer cells with KCNQ1OT1 downregulation. Further, hsa-miR-107 knockdown in KCNQ1OT1-downregulated cancer cells reversed its impairing effects on cancer cell proliferation and migration in vitro. Thus, loss of KCNQ1OT1 is associated with functional impairment in breast cancer cells, likely through inverse regulation of its sponging target, hsa-miR-107.


2019 ◽  
Vol 41 (8) ◽  
pp. 1123-1133 ◽  
Author(s):  
Bo Gao ◽  
Lianmei Zhao ◽  
Feifei Wang ◽  
Hanyu Bai ◽  
Jing Li ◽  
...  

Abstract Isochorismatase domain-containing 1 (ISOC1) is a coding gene that contains an isochorismatase domain. The precise functions of ISOC1 in humans have not been clarified; however, studies have speculated that it may be involved in unknown metabolic pathways. Currently, it is reported that ISOC1 is associated with breast cancer. In this research, the aim is to investigate the critical role of ISOC1 in colorectal cancer (CRC) and to explore its biological function and mechanism in colon cancer cells. In 106 paired clinical samples, we found that the levels of ISOC1 expression were widely increased in cancer tissues compared with matched adjacent non-tumor tissues and that increased expression of ISOC1 was significantly associated with tumor size, tumor invasion, local lymph node metastasis and Tumor, Node and Metastasis (TNM) stage. Moreover, higher expression levels of ISOC1 were correlated with shorter disease-free survival in patients 2 years after surgery. In vitro, ISOC1 knockdown inhibited the proliferation and migration and induced the apoptosis of colon cancer cells, and in vivo, the xenograft tumors were also inhibited by ISOC1 silencing. We also used MTS, Transwell and cell apoptosis assays to confirm that ISOC1 plays a critical role in regulating the biological functions of colon cancer cells through the AKT/GSK-3β pathway. Additionally, the results of confocal microscopy and western blot analysis indicated that ISOC1 knockdown could promote p-STAT1 translocation to the nucleus.


2020 ◽  
Author(s):  
Pingping Ge ◽  
Dong Fan ◽  
Lei He ◽  
Qiong Wu ◽  
Jin Sun ◽  
...  

Abstract Background: Methyltransferase-like 3(METTL3)-mediated N6-methyladenosine (m6A) modification has been reported to regulate microRNAs maturation. Here, the study was designed to investigate the regulatory effect of m6A-dependent miRNA maturation on pancreatic cancer progression which is still limited before.Results: We found that METTL3 significantly upregulated in the pancreatic tumor tissues. Overexpression of METTL3 promoted cancer cell proliferation and migration in vitro and tumor progression in vivo. METTL3-mediated m6A modification facilitated miR-196a maturation in pancreatic cancer cells, and miR-196a increased the proliferation and migration of cancer cells in vitro. Luciferase reporter assay verified that cytoplasmic polyadenylation element binding protein 3 (CPEB3) was a direct target gene of miR-196a. In vivo studies proved that overexpression of miR-196a inhibited the anti-tumor effect of knockdown of METTL3, and overexpression of CPEB3 inhibited the miR-196a-enhanced tumor progression. Conclusions: We identified that METTL3 was upregulated in pancreatic cancer, leading to the upregulation of miR-196a, resulting in the downregulation of CPEB3, which promoted the pancreatic tumor progression. We first demonstrated that CPEB3 was a tumor suppressor gene in pancreatic cancer, and the METTL3 regulated miR-196a/CPEB3 axis may be a therapeutic target for pancreatic cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document