scholarly journals Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hong-hua Cai ◽  
Wan-sheng Nie ◽  
Xin-lei Yang ◽  
Rui Wu ◽  
Ling-yu Su

Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

2018 ◽  
Author(s):  
Yasemin Basdogan ◽  
John Keith

<div> <div> <div> <p>We report a static quantum chemistry modeling treatment to study how solvent molecules affect chemical reaction mechanisms without dynamics simulations. This modeling scheme uses a global optimization procedure to identify low energy intermediate states with different numbers of explicit solvent molecules and then the growing string method to locate sequential transition states along a reaction pathway. Testing this approach on the acid-catalyzed Morita-Baylis-Hillman (MBH) reaction in methanol, we found a reaction mechanism that is consistent with both recent experiments and computationally intensive dynamics simulations with explicit solvation. In doing so, we explain unphysical pitfalls that obfuscate computational modeling that uses microsolvated reaction intermediates. This new paramedic approach can promisingly capture essential physical chemistry of the complicated and multistep MBH reaction mechanism, and the energy profiles found with this model appear reasonably insensitive to the level of theory used for energy calculations. Thus, it should be a useful and computationally cost-effective approach for modeling solvent mediated reaction mechanisms when dynamics simulations are not possible. </p> </div> </div> </div>


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Author(s):  
Barry K. Carpenter

In 1997, Ross Kelly and his coworkers at Boston College reported their results from an experiment with an intriguing premise (Kelly et al., 1997; see also Kelly et al., 1998). They had synthesized the molecule shown in figure 12.1. It was designed to be a “molecular ratchet,” so named because it appeared that it should undergo internal rotation about the A—B bond more readily in one direction than the other. The reason for thinking this might occur was that the benzophenanthrene moiety—the “pawl” of the ratchet—was anticipated to be helical. Thus, in some sense, this might be an inverse ratchet where the asymmetry dictating the sense of rotation would reside in the pawl rather than in the “teeth” on the “wheel” (the triptycene unit) as it does in a normal mechanical ratchet. Kelly and coworkers designed an elegant experiment to determine whether their molecular ratchet was functioning as anticipated, and they were (presumably) disappointed to find that it was not—internal rotation about the A—B bond occurred at equal rates in each direction. In 1998 Davis pointed out that occurrence of the desired behavior of the molecular ratchet would have constituted a violation of the second law of thermodynamics (Davis, 1998). With hindsight, I think most chemists would agree that Davis’s critique is unassailable, although the appeal of the mechanical analogy was so strong that I imagine those same chemists would also understand if Kelly et al. had overlooked the thermodynamic consequences of their proposal in the original design of the experiment. But now comes the interesting question: Suppose Kelly et al. had been fully aware that their experiment, if successful, would undermine the second law of thermodynamics, should they have conducted it anyway? Davis, in his critique writes: . . .Some would argue that this experiment was misconceived. To challenge the Second Law may be seen as scientific heresy (a nice irony, considering the Jesuit origins of Boston College), and the theoretical arguments against molecular ratchets and trapdoors are well developed. . . .


2020 ◽  
Vol 1-4 ◽  
pp. 100009
Author(s):  
Kaidi Wan ◽  
Luc Vervisch ◽  
Zhenxun Gao ◽  
Pascale Domingo ◽  
Chongwen Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document