scholarly journals Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Rokhsareh Rohban ◽  
Thomas Rudolf Pieber

It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration.

Author(s):  
Dong-Jiunn Jeffery Truong ◽  
Teeradon Phlairaharn ◽  
Bianca Eßwein ◽  
Christoph Gruber ◽  
Deniz Tümen ◽  
...  

AbstractExpression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


2020 ◽  
pp. 185-208
Author(s):  
John Parrington

Stem cells, which are ‘immortal’ cells that divide indefinitely and produce many different cell types, are central to how our body develops and maintains itself. Embryonic stem cells can give rise to all cell types in the body, and there has been lots of interest since their discovery in the 1980s in using such cells to generate new tissues or organs to replace diseased or faulty ones. More recently has come the discovery of induced pluripotent stem cells, which are normal skin cells taken from a person and genetically modified or tweaked chemically to give them stem cell properties. There is now hope that both of these types of stem cells might be used in ‘regenerative’ medicine, for instance in producing pancreatic cells that secrete insulin which could be used to treat diabetes. Perhaps the most remarkable breakthrough in recent years has been the discovery that stem cells introduced into a 3D matrix that is infused with chemicals that stimulate the development of particular cell types, can spontaneously form ‘organoids’, which have many of the cell types and even structural features of human organs such as hearts, kidneys, intestines, and even eyes and brains. Organoids make it possible to study how human organs develop but also this area of science raises many ethical issues. For instance, currently human brain organoids can only grow to the size of an embryonic brain, but if in the future they could be induced to grow to adult brain size, could they develop feelings and thoughts?


2020 ◽  
Vol 22 (10) ◽  
Author(s):  
Mauro Giacca

Abstract Purpose of Review Until recently, cardiac regeneration after myocardial infarction has remained a holy grail in cardiology. Failure of clinical trials using adult stem cells and scepticism about the actual existence of such cells has reinforced the notion that the heart is an irreversibly post-mitotic organ. Recent evidence has drastically challenged this conclusion. Recent Findings Cardiac regeneration can successfully be obtained by at least two strategies. First, new cardiomyocytes can be generated from embryonic stem cells or induced pluripotent stem cells and administered to the heart either as cell suspensions or upon ex vivo generation of contractile myocardial tissue. Alternatively, the endogenous capacity of cardiomyocytes to proliferate can be stimulated by the delivery of individual genes or, more successfully, of selected microRNAs. Summary Recent experimental success in large animals by both strategies now fuels the notion that cardiac regeneration is indeed possible. Several technical hurdles, however, still need to be addressed and solved before broad and successful clinical application is achieved.


2020 ◽  
Vol 16 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Sang Hun Kim ◽  
Jeoung Hyun Nam ◽  
Man Ryul Lee ◽  
Yongsung Hwang ◽  
Eun Soo Park

Background: Human-induced pluripotent stem cells (hiPSCs) complement the disadvantages of conventional embryonic stem cells and adult stem cells, and have the advantages of simplicity of production and pluripotency. Some recent studies have applied hiPSC in cell therapy.Methods: In this study, we examined the effect of cells similar to cord blood endothelial colony-forming cells (CB-ECFCs), differentiated from induced pluripotent stem cells, on angiogenesis and granulation tissue formation in the proliferative phase of wound healing. For cell transfer, we used methacrylated gelatin (GelMA)-co-poly(styrene sulfonate) (PSS) cryogel, which has better bioactivity than conventional hydrogels and excellent mechanical properties and swelling capacity. Two full-thickness skin defects, 0.8 cm in diameter, were made in each of our 12 experimental mice. Wound splinting models were used to prevent contraction of the wounds. In each of the experimental animals, 5×10<sup>5</sup> cells were applied with GelMA-co-PSS cryogel in one of the two wounds, while only a culture medium with cryogel was applied to the other wound.Results: Wound reduction rates in the experimental side showed increases compared to the control side in 3 days, but there was no statistical significance. The histological score was significantly increased (P<0.05), and histologic examination showed that angiogenesis and granulation formation were also increased in the experiment side.Conclusion: In conclusion, CB-ECFCs-like cells differentiated from hiPSCs were effective in promoting formation of angiogenesis and granulation tissue in a mouse wound healing model.


2020 ◽  
Vol 11 (2) ◽  
pp. 1377-1385
Author(s):  
Chetan Kumar V H ◽  
Famna Roohi N K ◽  
Gowda D V

The recognition of kidney failure as a complex disease requires multifactorial therapy in order to correct the conventional nonfactorial deficiency. Firstly, self-renewal means the ability of most organisms to reproduce without separation or aging; secondly, more than one form of a mature somatic cell is identified by each of the three regardless of kidney disorders, it can lead to loss of the environment, often bacterial infections. The reconstruction of the kidney has produced a spectacular response in this framework. The restoration of weakened and new kidneys is an alternative to renal replacement therapy. Both teratomas and embryoid bodies consist of three different layers of embryonic germs. Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are present. These either provide useful therapeutical resources or can explore pathophysiology, including kidney diseases or infection. The benefit of ESCs is that they are relatively quick to receive and no longer subject to licensing/realty fees. Nevertheless, there are still some major concerns, such as ethical issues, the high risks to degeneration of neoplasm and immunocompatibility. The great benefit of iPSCs is that they have the same genetic history they drive making them an excellent method for studying the impact of genetic variants on disease path the key risk associated with the use of iPSCs are oogenesis, Tumorigenicity, and immunogenicity, the presence of an epigenetic memory, technical and economic issue associatedwith their long turnaround time and the presence of loyalties are the key risks associated with the use of iPSCs. Human pluripotent SCs have two major areas of use in kidney regeneration: they can be used by way organoid, scaffold,organ-on-a-chip, or blastocyst experiment to develop a "new kidney" or part of it. Renal progenitor cells are an alternative to either test or modulate regeneration of the kidney, offering significant benefits in the field. For encouraging us to hypothesize their medical use, a deeper understanding of the biology of pluripotent SCs is necessary.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shanshan Hu ◽  
Ge Shan

Noncoding RNAs are critical regulatory factors in essentially all forms of life. Stem cells occupy a special position in cell biology and Biomedicine, and emerging results show that multiple ncRNAs play essential roles in stem cells. We discuss some of the known ncRNAs in stem cells such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adult stem cells, and cancer stem cells with a focus on long ncRNAs. Roles and functional mechanisms of these lncRNAs are summarized, and insights into current and future studies are presented.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Nadiya Patel

Stem cells have the capability of differentiating into limitless cell types, alongside the function of exceptional proliferative capacity. There are three main types of stem cells: embryonic stem cells (ESCs), induced pluripotent stem cells (IPSCs) and mesenchymal stem cells (MSCs). ESCs are highly versatile and hold great therapeutic potential but have great ethical barriers and considerations that are yet to be overcome. IPSCs have become increasingly popular within research as they are not restrained by any ethical issues and do not require approval for their usage. The aim of this review was to expand on the background and therapeutic potential of ESCs and IPSCs whilst linking this to their use within disease therapy with a specific focus on ethics, tumorigenesis and survivability. The analysis found some conflicting results and a delay in the advance of overcoming the problems of tumorigenesis and survivability of stem cells. Both stem cells types have shown good efficacy but do also come with their disadvantages.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weiwei Sun ◽  
Bin Zhang ◽  
Qingli Bie ◽  
Na Ma ◽  
Na Liu ◽  
...  

The biological role of RNA methylation in stem cells has attracted increasing attention. Recent studies have demonstrated that RNA methylation plays a crucial role in self-renewal, differentiation, and tumorigenicity of stem cells. In this review, we focus on the biological role of RNA methylation modifications including N6-methyladenosine, 5-methylcytosine, and uridylation in embryonic stem cells, adult stem cells, induced pluripotent stem cells, and cancer stem cells, so as to provide new insights into the potential innovative treatments of cancer or other complex diseases.


Author(s):  
Xiansi Zeng ◽  
Wenshuo Geng ◽  
Jinjing Jia ◽  
Zhanqi Wang

: Parkinson’s disease (PD) is a common neurodegenerative disease and is a major culprit that harms the health of elderly people. The main pathological feature is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. The current mainstream therapeutic strategies include surgical treatment and medicine substitute therapy. However, these treatment methods sometime have limitations. Subsequently, the treatment with stem cells (SCs) transplantation has been gradually established. SCs is a kind of cell with self-renewal ability and multi-directional differentiation potential. Transplantation of SCs, including embryonic stem cells, adult stem cells (neural stem cells and mesenchymal stem cells) and induced pluripotent stem cells, have the ability to mediate nerve regeneration and restoration within the lesioned midbrain tissue, bringing hope for the treatment of PD. In this paper we summarize the progress in therapeutic strategies of different types of SCs in PD treatment, with an emphasis on the advantages and limitations.


Sign in / Sign up

Export Citation Format

Share Document