scholarly journals Diversity-Multiplexing-Nulling Trade-Off Analysis of Multiuser MIMO System for Intercell Interference Coordination

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Jinwoo Kim ◽  
Chung G. Kang

A fundamental performance trade-off of multicell multiuser multiple-input multiple-output (MU-MIMO) systems is explored for achieving intercell and intracell interference-free conditions. In particular, we analyze the three-dimensional diversity-multiplexing-nulling trade-off (DMNT) among the diversity order (i.e., the slope of the error performance curve), multiplexing order (i.e., the number of users that are simultaneously served by MU-MIMO), and nulling order (i.e., the number of users with zero interference in a victim cell). This trade-off quantifies the performance of MU-MIMO in terms of its diversity and multiplexing order, while nulling the intercell interference toward the victim cell in the neighbor. First, we design a precoding matrix to mitigate both intercell and intracell interference for a linear precoding-based MU-MIMO system. Then, the trade-off relationship is obtained by analyzing the distribution of the signal-to-noise ratio (SNR) at the user terminals. Furthermore, we demonstrate how DMNT can be applied to estimate the long-term throughput for each mobile station, which allows for determining the optimal number of multiplexing order and throughput loss due to the interference nulling.

2021 ◽  
Vol 11 (20) ◽  
pp. 9409
Author(s):  
Roger Kwao Ahiadormey ◽  
Kwonhue Choi

In this paper, we propose rate-splitting (RS) multiple access to mitigate the effects of quantization noise (QN) inherent in low-resolution analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). We consider the downlink (DL) of a multiuser massive multiple-input multiple-output (MIMO) system where the base station (BS) is equipped with low-resolution ADCs/DACs. The BS employs the RS scheme for data transmission. Under imperfect channel state information (CSI), we characterize the spectral efficiency (SE) and energy efficiency (EE) by deriving the asymptotic signal-to-interference-and-noise ratio (SINR). For 1-bit resolution, the QN is very high, and the RS scheme shows no rate gain over the non-RS scheme. As the ADC/DAC resolution increases (i.e., 2–3 bits), the RS scheme achieves higher SE in the high signal-to-noise ratio (SNR) regime compared to that of the non-RS scheme. For a 3-bit resolution, the number of antennas can be reduced by 27% in the RS scheme to achieve the same SE as the non-RS scheme. Low-resolution DACs degrades the system performance more than low-resolution ADCs. Hence, it is preferable to equip the system with low-resolution ADCs than low-resolution DACs. The system achieves the best SE/EE tradeoff for 4-bit resolution ADCs/DACs.


Author(s):  
T. Cogalan ◽  
H. Haas ◽  
E. Panayirci

Visible light communication (VLC) systems are inherently signal-to-noise ratio (SNR) limited due to link budget constraints. One favourable method to overcome this limitation is to focus on the pre-log factors of the channel capacity. Multiple-input multiple-output (MIMO) techniques are therefore a promising avenue of research. However, inter-channel interference in MIMO limits the achievable capacity. Spatial modulation (SM) avoids this limitation. Furthermore, the performance of MIMO systems in VLC is limited by the similarities among spatial channels. This limitation becomes particularly severe in intensity modulation/direct detection (IM/DD) systems because of the lack of phase information. The motivation of this paper is to propose a system that results in a multi-channel transmission system that enables reliable multi-user optical MIMO SM transmission without the need for a precoder, power allocation algorithm or additional optics at the receiver. A general bit error performance model for the SM system is developed for an arbitrary number of light-emitting diodes (LEDs) in conjunction with pulse amplitude modulation. Based on this model, an LED array structure is designed to result in spatially separated multiple channels by manipulating the transmitter geometry. This article is part of the theme issue ‘Optical wireless communication’.


2017 ◽  
Vol 67 (6) ◽  
pp. 668
Author(s):  
Qingzhu Wang ◽  
Mengying Wei ◽  
Yihai Zhu

<p class="p1">To make full use of space multiplexing gains for the multi-user massive multiple-input multiple-output, accurate channel state information at the transmitter (CSIT) is required. However, the large number of users and antennas make CSIT a higher-order data representation. Tensor-based compressive sensing (TCS) is a promising method that is suitable for high-dimensional data processing; it can reduce training pilot and feedback overhead during channel estimation. In this paper, we consider the channel estimation in frequency division duplexing (FDD) multi-user massive MIMO system. A novel estimation framework for three dimensional CSIT is presented, in which the modes include the number of transmitting antennas, receiving antennas, and users. The TCS technique is employed to complete the reconstruction of three dimensional CSIT. The simulation results are given to demonstrate that the proposed estimation approach outperforms existing algorithms.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Canyun Xiong ◽  
Shiyong Chen ◽  
Liang Li ◽  
Yucheng Wu

A massive multiple-input multiple-output (MIMO) system uses a large number of antennas in the base station (BS) to serve multiple users, which significantly improves the capacity of the system. However, in time division duplex (TDD) mode, the pilot contamination (PC) is inevitable due to the multiplexing of pilots. This paper proposed a pilot assignment based on graph coloring and location information (GC-LI) to improve the performance of users. Specifically, based on graph coloring, the proposed GC-LI algorithm combines location information like the angle of arrival (AoA), distance, and correlation to construct an interference graph. Then, we calculate the interference between any two users and use the postprocessing discrete Fourier transform (DFT) filtering process to effectively distinguish the users with nonoverlapping AoAs. Finally, according to the interference graph, the GC-LI algorithm is proposed to mitigate the intercell interference (ICI) between users with the same pilot by assigning different pilots to connected users with high ICI metrics based on some regulation. Simulation results show that the GC-LI algorithm is suitable for various types of cells. In addition, compared with the existing pilot assignment algorithms based on graph coloring, users’ average signal-to-interference-plus-noise ratio (SINR) and uplink achievable sum rate (ASR) are significantly improved.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 231 ◽  
Author(s):  
Inho Hwang ◽  
Han Park ◽  
Jeong Lee

We design a coded massive multiple-input multiple-output (MIMO) system using low-density parity-check (LDPC) codes and iterative joint detection and decoding (JDD) algorithm employing a low complexity detection. We introduce the factor graph representation of the LDPC coded massive MIMO system, based on which the message updating rule in the JDD is defined. We devise a tool for analyzing extrinsic information transfer (EXIT) characteristics of messages flowing in the JDD and the three-dimensional (3-D) EXIT chart provides a visualization of the JDD behavior. Based on the proposed 3-D EXIT analysis, we design jointly the degree distribution of irregular LDPC codes and the JDD strategy for the coded massive MIMO system. The JDD strategy was determined to achieve a higher error correction capability with a given amount of computational complexity. It was observed that the coded massive MIMO system equipped with the proposed LDPC codes and the proposed JDD strategy has lower bit error rate than conventional LDPC coded massive MIMO systems.


2018 ◽  
Vol 14 (07) ◽  
pp. 30
Author(s):  
Zhiguo Lv ◽  
Ying Li

The high-order multiple-input multiple-output (MIMO) system can remarkably increase the data rate or enhance the reliability. However, it is difficult to perform channel estimation because of the massive number of antennas. The Narrow Band Estimation Antenna Processing (NBEAP) scheme is used to deal with this issue. Nevertheless, the accuracy of the channel estimation needs to be improved. In this paper, a compressive sensing based scheme named Narrow Band Estimation Fixed Antenna Processing (NBEFAP) is proposed to estimate the channel state information (CSI) for high-order MIMO systems. A simple pilot structure is designed to decrease the computation complexity. In addition, the pilot length is adjusted according to the time-varying sparsity level of the CSI. Compared with NBEAP scheme, NBEFAP scheme can improve the estimation error performance. Simulation results verify the effectiveness of the NBEFAP scheme.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Javad Ahmadi-Shokouh

A Hybrid Antenna Selection (HAS), also called Soft Antenna Selection (SAS), method is basically implemented by a Linear Network (LN) located in RF domain of Multiple Input Multiple Output (MIMO) systems. In this paper, we evaluate the SAS-MIMO system, which is optimally tuned based on spatial multiplexing/diversity transmissions, in terms of receiver dynamic range issue. To this end, an SNR analysis is first performed for a reference point that is the input of Receiver Chain Block (RCB). Different systems are then compared based on a standard receiver, that is, WLAN 802.11 b. A three Dimensional (3D) ray-tracing modeling is applied to assist this evaluation. The simulation results for a case study show that although the optimum post-LNA SAS works like a full-complexity MIMO in the spatial multiplexing/diversity transmission strategies, it provides even a better SNR to the baseband, that is, it reveals a receiver dynamic range improvement.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Shichuan Ma ◽  
Lim Nguyen ◽  
Won Mee Jang ◽  
Yaoqing (Lamar) Yang

Self-encoded spread spectrum (SESS) is a novel communication technique that derives its spreading code from the randomness of the source stream rather than using conventional pseudorandom noise (PN) code. In this paper, we propose to incorporate SESS in multiple-input multiple-output (MIMO) systems as a means to combat against fading effects in wireless channels. Orthogonal space-time block-coded MIMO technique is employed to achieve spatial diversity, and the inherent temporal diversity in SESS modulation is exploited with iterative detection. Simulation results demonstrate that MIMO-SESS can effectively mitigate the channel fading effect such that the system can achieve a bit error rate of with very low signal-to-noise ratio, from 3.3 dB for a antenna configuration to just less than 0 dB for a configuration under Rayleigh fading. The performance improvement for the case is as much as 6.7 dB when compared to an MIMO PN-coded spread spectrum system.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Sign in / Sign up

Export Citation Format

Share Document