scholarly journals Compressive Sensing Based Channel Estimation for High-order MIMO Systems

2018 ◽  
Vol 14 (07) ◽  
pp. 30
Author(s):  
Zhiguo Lv ◽  
Ying Li

The high-order multiple-input multiple-output (MIMO) system can remarkably increase the data rate or enhance the reliability. However, it is difficult to perform channel estimation because of the massive number of antennas. The Narrow Band Estimation Antenna Processing (NBEAP) scheme is used to deal with this issue. Nevertheless, the accuracy of the channel estimation needs to be improved. In this paper, a compressive sensing based scheme named Narrow Band Estimation Fixed Antenna Processing (NBEFAP) is proposed to estimate the channel state information (CSI) for high-order MIMO systems. A simple pilot structure is designed to decrease the computation complexity. In addition, the pilot length is adjusted according to the time-varying sparsity level of the CSI. Compared with NBEAP scheme, NBEFAP scheme can improve the estimation error performance. Simulation results verify the effectiveness of the NBEFAP scheme.

2017 ◽  
Vol 67 (6) ◽  
pp. 668
Author(s):  
Qingzhu Wang ◽  
Mengying Wei ◽  
Yihai Zhu

<p class="p1">To make full use of space multiplexing gains for the multi-user massive multiple-input multiple-output, accurate channel state information at the transmitter (CSIT) is required. However, the large number of users and antennas make CSIT a higher-order data representation. Tensor-based compressive sensing (TCS) is a promising method that is suitable for high-dimensional data processing; it can reduce training pilot and feedback overhead during channel estimation. In this paper, we consider the channel estimation in frequency division duplexing (FDD) multi-user massive MIMO system. A novel estimation framework for three dimensional CSIT is presented, in which the modes include the number of transmitting antennas, receiving antennas, and users. The TCS technique is employed to complete the reconstruction of three dimensional CSIT. The simulation results are given to demonstrate that the proposed estimation approach outperforms existing algorithms.</p>


2020 ◽  
Vol 10 (12) ◽  
pp. 4397 ◽  
Author(s):  
Prateek Saurabh Srivastav ◽  
Lan Chen ◽  
Arfan Haider Wahla

Channel estimation is a formidable challenge in mmWave Multiple Input Multiple Output (MIMO) systems due to the large number of antennas. Therefore, compressed sensing (CS) techniques are used to exploit channel sparsity at mmWave frequencies to calculate fewer dominant paths in mmWave channels. However, conventional CS techniques require a higher training overhead for efficient recovery. In this paper, an efficient extended alternation direction method of multipliers (Ex-ADMM) is proposed for mmWave channel estimation. In the proposed scheme, a joint optimization problem is formulated to exploit low rank and channel sparsity individually in the antenna domain. Moreover, a relaxation factor is introduced which improves the proposed algorithm’s convergence. Simulation experiments illustrate that the proposed algorithm converges at lower Normalized Mean Squared Error (NMSE) with improved spectral efficiency. The proposed algorithm also ameliorates NMSE performance at low, mid and high Signal to Noise (SNR) ranges.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Han Wang ◽  
Wencai Du ◽  
Xianpeng Wang ◽  
Guicai Yu ◽  
Lingwei Xu

A filter bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) (FBMC/OQAM) is considered to be one of the physical layer technologies in future communication systems, and it is also a wireless transmission technology that supports the applications of Internet of Things (IoT). However, efficient channel parameter estimation is one of the difficulties in realization of highly available FBMC systems. In this paper, the Bayesian compressive sensing (BCS) channel estimation approach for FBMC/OQAM systems is investigated and the performance in a multiple-input multiple-output (MIMO) scenario is also analyzed. An iterative fast Bayesian matching pursuit algorithm is proposed for high channel estimation. Bayesian channel estimation is first presented by exploring the prior statistical information of a sparse channel model. It is indicated that the BCS channel estimation scheme can effectively estimate the channel impulse response. Then, a modified FBMP algorithm is proposed by optimizing the iterative termination conditions. The simulation results indicate that the proposed method provides better mean square error (MSE) and bit error rate (BER) performance than conventional compressive sensing methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Su ◽  
KyungHi Chang

Massive multiple input, multiple output (M-MIMO) technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF), we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO) system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE) approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A) specification, the simulation results finally confirm the validity of our proposals.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hong-tao Zhen ◽  
Xiao-hui Qi ◽  
Jie Li ◽  
Qing-min Tian

An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of anL1adaptive controller and an auxiliary neural network (NN) compensation controller. TheL1adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Canyun Xiong ◽  
Shiyong Chen ◽  
Liang Li ◽  
Yucheng Wu

A massive multiple-input multiple-output (MIMO) system uses a large number of antennas in the base station (BS) to serve multiple users, which significantly improves the capacity of the system. However, in time division duplex (TDD) mode, the pilot contamination (PC) is inevitable due to the multiplexing of pilots. This paper proposed a pilot assignment based on graph coloring and location information (GC-LI) to improve the performance of users. Specifically, based on graph coloring, the proposed GC-LI algorithm combines location information like the angle of arrival (AoA), distance, and correlation to construct an interference graph. Then, we calculate the interference between any two users and use the postprocessing discrete Fourier transform (DFT) filtering process to effectively distinguish the users with nonoverlapping AoAs. Finally, according to the interference graph, the GC-LI algorithm is proposed to mitigate the intercell interference (ICI) between users with the same pilot by assigning different pilots to connected users with high ICI metrics based on some regulation. Simulation results show that the GC-LI algorithm is suitable for various types of cells. In addition, compared with the existing pilot assignment algorithms based on graph coloring, users’ average signal-to-interference-plus-noise ratio (SINR) and uplink achievable sum rate (ASR) are significantly improved.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Athar Waseem ◽  
Aqdas Naveed ◽  
Sardar Ali ◽  
Muhammad Arshad ◽  
Haris Anis ◽  
...  

Massive multiple-input multiple-output (MIMO) is believed to be a key technology to get 1000x data rates in wireless communication systems. Massive MIMO occupies a large number of antennas at the base station (BS) to serve multiple users at the same time. It has appeared as a promising technique to realize high-throughput green wireless communications. Massive MIMO exploits the higher degree of spatial freedom, to extensively improve the capacity and energy efficiency of the system. Thus, massive MIMO systems have been broadly accepted as an important enabling technology for 5th Generation (5G) systems. In massive MIMO systems, a precise acquisition of the channel state information (CSI) is needed for beamforming, signal detection, resource allocation, etc. Yet, having large antennas at the BS, users have to estimate channels linked with hundreds of transmit antennas. Consequently, pilot overhead gets prohibitively high. Hence, realizing the correct channel estimation with the reasonable pilot overhead has become a challenging issue, particularly for frequency division duplex (FDD) in massive MIMO systems. In this paper, by taking advantage of spatial and temporal common sparsity of massive MIMO channels in delay domain, nonorthogonal pilot design and channel estimation schemes are proposed under the frame work of structured compressive sensing (SCS) theory that considerably reduces the pilot overheads for massive MIMO FDD systems. The proposed pilot design is fundamentally different from conventional orthogonal pilot designs based on Nyquist sampling theorem. Finally, simulations have been performed to verify the performance of the proposed schemes. Compared to its conventional counterparts with fewer pilots overhead, the proposed schemes improve the performance of the system.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 573 ◽  
Author(s):  
Menghan Wang ◽  
Dongming Wang

This paper presents some exact results on the sum-rate of multi-user multiple-input multiple-output (MU-MIMO) systems subject to multi-cell pilot contamination under correlated Rayleigh fading. With multi-cell multi-user channel estimator, we give the lower bound of the sum-rate. We derive the moment generating function (MGF) of the sum-rate and then obtain the closed-form approximations of the mean and variance of the sum-rate. Then, with Gaussian approximation, we study the outage performance of the sum-rate. Furthermore, considering the number of antennas at base station becomes infinite, we investigate the asymptotic performance of the sum-rate. Theoretical results show that compared to MU-MIMO system with perfect channel estimation and no pilot contamination, the variance of the sum-rate of the considered system decreases very quickly as the number of antennas increases.


Sign in / Sign up

Export Citation Format

Share Document