scholarly journals Quercetin Inhibits Pulmonary Arterial Endothelial Cell Transdifferentiation Possibly by Akt and Erk1/2 Pathways

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shian Huang ◽  
Xiulong Zhu ◽  
Wenjun Huang ◽  
Yuan He ◽  
Lingpin Pang ◽  
...  

This study aimed to investigate the effects and mechanisms of quercetin on pulmonary arterial endothelial cell (PAEC) transdifferentiation into smooth muscle-like cells. TGF-β1-induced PAEC transdifferentiation models were applied to evaluate the pharmacological actions of quercetin. PAEC proliferation was detected with CCK8 method and BurdU immunocytochemistry. Meanwhile, the identification and transdifferentiation of PAECs were determined by FVIII immunofluorescence staining andα-SMA protein expression. The related mechanism was elucidated based on the levels of Akt and Erk1/2 signal pathways. As a result, quercetin effectively inhibited the TGF-β1-induced proliferation and transdifferentiation of the PAECs and activation of Akt/Erk1/2 cascade in the cells. In conclusion, quercetin is demonstrated to be effective for pulmonary arterial hypertension (PAH) probably by inhibiting endothelial transdifferentiation possibly via modulating Akt and Erk1/2 expressions.

2015 ◽  
Vol 117 (10) ◽  
pp. 870-883 ◽  
Author(s):  
Lin Deng ◽  
Francisco J. Blanco ◽  
Hannah Stevens ◽  
Ruifang Lu ◽  
Axelle Caudrillier ◽  
...  

Author(s):  
Ruma Pal-Ghosh ◽  
Danfeng Xue ◽  
Rod Warburton ◽  
Nicholas Hill ◽  
Peter Polgar ◽  
...  

A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein we identify cyclin dependent kinase 1 (CDK1) also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7 and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in a potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.


2021 ◽  
Vol 22 (13) ◽  
pp. 6943
Author(s):  
Ruma Pal-Ghosh ◽  
Danfeng Xue ◽  
Rod Warburton ◽  
Nicholas Hill ◽  
Peter Polgar ◽  
...  

A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.


2018 ◽  
Vol 96 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Rafaela Siqueira ◽  
Rafael Colombo ◽  
Adriana Conzatti ◽  
Alexandre Luz de Castro ◽  
Cristina Campos Carraro ◽  
...  

The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg−1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.


Sign in / Sign up

Export Citation Format

Share Document