scholarly journals Morphometric Analysis and Classification of the Cross-Sectional Shape of the C2 Lamina

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Soyeon Kim ◽  
Dai-Soon Kwak ◽  
In-Beom Kim

A thorough understanding of the morphology of the lamina of the second cervical vertebra (C2) is important for safe C2 translaminar screw placement. Although anatomical characteristics of the C2 lamina have been widely documented, individual differences in morphology have not been addressed. The aim of this study was to morphometrically analyze the cross-sectional shape of the C2 lamina and classify the shape to describe individual differences. Morphometric analysis was conducted on 145 three-dimensional C2 models based on computerized tomography images from Korean adult cadavers. Several parameters were measured on a cross-section image of the lamina model. Based on numerical criteria, all of the C2 lamina’s cross-sectional shapes could be categorized into three distinctive morphological types: pyriform, ellipse, and obpyriform shapes. We confirmed that most Koreans can accommodate C2 translaminar screw placement with a lower limit of the 95% confidence interval of thickness measured at 6.26 mm. Morphometric analysis suggested that the obpyriform-shaped lamina (4.48%) is likely to require screw trajectory adjustment to avoid cortical breakout of the screw. Our results will enhance current anatomical understanding of the C2 lamina and thus facilitate safer C2 translaminar screw placement.

2012 ◽  
Vol 500 ◽  
pp. 236-241 ◽  
Author(s):  
Quan Lai Li ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Hong Tao Zhu

Micro abrasive air jet (MAAJ) cutting is a promising technology for the fabrication of three-dimensional microstructures in hard and brittle materials. In this paper, a study on the cross-sectional shape of the kerf cut with MAAJ is presented. It shows that the machining depth and slope of the sidewall increase with an increase in air pressure, abrasive flow rate and jet incidence angle, while decrease with an increase in nozzle traverse speed. Using a dimensional analysis technique, predictive model for cross-sectional profile is developed. The research results may be meaningful to the highly precision three-dimensional micro-structural cutting.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhe Li ◽  
Guanzhi Liu ◽  
Run Tian ◽  
Ning Kong ◽  
Yue Li ◽  
...  

Abstract Background Our objective was to obtain normal patellofemoral measurements to analyse sex and individual differences. In addition, the absolute values and indices of tibial tuberosity-trochlear groove (TT-TG) distances are still controversial in clinical application. A better method to enable precise prediction is still needed. Methods Seventy-eight knees of 78 participants without knee pathologies were included in this cross-sectional study. A CT scan was conducted for all participants and three-dimensional knee models were constructed using Mimics and SolidWorks software. We measured and analysed 19 parameters including the TT-TG distance and dimensions and shapes of the patella, femur, tibia, and trochlea. LASSO regression was used to predict the normal TT-TG distances. Results The dimensional parameters, TT-TG distance, and femoral aspect ratio of the men were significantly larger than those of women (all p values < 0.05). However, after controlling for the bias from age, height, and weight, there were no significant differences in TT-TG distances and anterior-posterior dimensions between the sexes (all p values > 0.05). The Pearson correlation coefficients between the anterior femoral offset and other indexes were consistently below 0.3, indicating no relationship or a weak relationship. Similar results were observed for the sulcus angle and the Wiberg index. Using LASSO regression, we obtained four parameters to predict the TT-TG distance (R2 = 0.5612, p < 0.01) to achieve the optimal accuracy and convenience. Conclusions Normative data of patellofemoral morphology were provided for the Chinese population. The anterior-posterior dimensions of the women were thicker than those of men for the same medial-lateral dimensions. More attention should be paid to not only sex differences but also individual differences, especially the anterior condyle and trochlea. In addition, this study provided a new method to predict TT-TG distances accurately.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


2019 ◽  
Vol 7 (4) ◽  
pp. 5-8
Author(s):  
Linar Sabitov ◽  
Ilnar Baderddinov ◽  
Anton Chepurnenko

The article considers the problem of optimizing the geometric parameters of the cross section of the belts of a trihedral lattice support in the shape of a pentagon. The axial moment of inertia is taken as the objective function. Relations are found between the dimensions of the pentagonal cross section at which the objective function takes the maximum value. We introduce restrictions on the constancy of the consumption of material, as well as the condition of equal stability. The solution is performed using nonlinear optimization methods in the Matlab environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Easir Arafat Papon ◽  
Anwarul Haque ◽  
Muhammad Ali Rob Sharif

Purpose This paper aims to develop a numerical model of bead spreading architecture of a viscous polymer in fused filament fabrication (FFF) process with different nozzle geometry. This paper also focuses on the manufacturing feasibility of the nozzles and 3D printing of the molten beads using the developed nozzles. Design/methodology/approach The flow of a highly viscous polymer from a nozzle, the melt expansion in free space and the deposition of the melt on a moving platform are captured using the FLUENT volume of fluid (VOF) method based computational fluid dynamics code. The free surface motion of the material is captured in VOF, which is governed by the hydrodynamics of the two-phase flow. The phases involved in the numerical model are liquid polymer and air. A laminar, non-Newtonian and non-isothermal flow is assumed. Under such assumptions, the spreading characteristic of the polymer is simulated with different nozzle-exit geometries. The governing equations are solved on a regular stationary grid following a transient algorithm, where the boundary between the polymer and the air is tracked by piecewise linear interface construction (PLIC) to reconstruct the free surface. The prototype nozzles were also manufactured, and the deposition of the molten beads on a flatbed was performed using a commercial 3D printer. The deposited bead cross-sections were examined through optical microscopic examination, and the cross-sectional profiles were compared with those obtained in the numerical simulations. Findings The numerical model successfully predicted the spreading characteristics and the cross-sectional shape of the extruded bead. The cross-sectional shape of the bead varied from elliptical (with circular nozzle) to trapezoidal (with square and star nozzles) where the top and bottom surfaces are significantly flattened (which is desirable to reduce the void spaces in the cross-section). The numerical model yielded a good approximation of the bead cross-section, capturing most of the geometric features of the bead with a reasonable qualitative agreement compared to the experiment. The quantitative comparison of the cross-sectional profiles against experimental observation also indicated a favorable agreement. The significant improvement observed in the bead cross-section with the square and star nozzles is the flattening of the surfaces. Originality/value The developed numerical algorithm attempts to address the fundamental challenge of voids and bonding in the FFF process. It presents a new approach to increase the inter-bead bonding and reduce the inter-bead voids in 3D printing of polymers by modifying the bead cross-sectional shape through the modification of nozzle exit-geometry. The change in bead cross-sectional shape from elliptical (circular) to trapezoidal (square and star) cross-section is supposed to increase the contact surface area and inter-bead bonding while in contact with adjacent beads.


Sign in / Sign up

Export Citation Format

Share Document