scholarly journals PPAR Agonists for the Prevention and Treatment of Lung Cancer

PPAR Research ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Sowmya P. Lakshmi ◽  
Aravind T. Reddy ◽  
Asoka Banno ◽  
Raju C. Reddy

Lung cancer is the most common and most fatal of all malignancies worldwide. Furthermore, with more than half of all lung cancer patients presenting with distant metastases at the time of initial diagnosis, the overall prognosis for the disease is poor. There is thus a desperate need for new prevention and treatment strategies. Recently, a family of nuclear hormone receptors, the peroxisome proliferator-activated receptors (PPARs), has attracted significant attention for its role in various malignancies including lung cancer. Three PPARs, PPARα, PPARβ/δ, and PPARγ, display distinct biological activities and varied influences on lung cancer biology. PPARαactivation generally inhibits tumorigenesis through its antiangiogenic and anti-inflammatory effects. Activated PPARγis also antitumorigenic and antimetastatic, regulating several functions of cancer cells and controlling the tumor microenvironment. Unlike PPARαand PPARγ, whether PPARβ/δactivation is anti- or protumorigenic or even inconsequential currently remains an open question that requires additional investigation. This review of current literature emphasizes the multifaceted effects of PPAR agonists in lung cancer and discusses how they may be applied as novel therapeutic strategies for the disease.

PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Saswati Hazra ◽  
Katherine A. Peebles ◽  
Sherven Sharma ◽  
Jenny T. Mao ◽  
Steven M. Dubinett

Decreased expression of peroxisome proliferator activated receptor- (PPAR) and high levels of the proinflammatory enzyme cyclooxygenase-2 (COX-2) have been observed in many tumor types. Both reduced (PPAR) expression and elevated COX-2 within the tumor are associated with poor prognosis in lung cancer patients, and recent work has indicated that these signaling pathways may be interrelated. Synthetic (PPAR) agonists such as the thiazolidinedione (TZD) class of anti-diabetic drugs can decrease COX-2 levels, inhibit growth of non-small-cell lung cancer (NSCLC) cells in vitro, and block tumor progression in xenograft models. TZDs alter the expression of COX-2 and consequent production of the protumorigenic inflammatory molecule prostaglandin E2 (PGE2) through both (PPAR) dependent and independent mechanisms. Certain TZDs also reduce expression of PGE2 receptors or upregulate the PGE2 catabolic enzyme 15-prostaglandin dehydrogenase. As several COX-2 enzymatic products have antitumor properties and specific COX-2 inhibition has been associated with increased risk of adverse cardiac events, directly reducing the effects or concentration of PGE2 may provide a more safe and effective strategy for lung cancer treatment. Understanding the mechanisms underlying these effects may be helpful for designing anticancer therapies. This article summarizes recent research on the relationship between (PPAR), TZDs, and the COX-2/PGE2 pathways in lung cancer.


2019 ◽  
Vol 21 (10) ◽  
pp. 734-748 ◽  
Author(s):  
Baoling Guo ◽  
Qiuxiang Zheng

Aim and Objective: Lung cancer is a highly heterogeneous cancer, due to the significant differences in molecular levels, resulting in different clinical manifestations of lung cancer patients there is a big difference. Including disease characterization, drug response, the risk of recurrence, survival, etc. Method: Clinical patients with lung cancer do not have yet particularly effective treatment options, while patients with lung cancer resistance not only delayed the treatment cycle but also caused strong side effects. Therefore, if we can sum up the abnormalities of functional level from the molecular level, we can scientifically and effectively evaluate the patients' sensitivity to treatment and make the personalized treatment strategies to avoid the side effects caused by over-treatment and improve the prognosis. Result & Conclusion: According to the different sensitivities of lung cancer patients to drug response, this study screened out genes that were significantly associated with drug resistance. The bayes model was used to assess patient resistance.


2018 ◽  
Vol 18 (6) ◽  
pp. 832-836
Author(s):  
Giuseppe Buono ◽  
Francesco Schettini ◽  
Francesco Perri ◽  
Grazia Arpino ◽  
Roberto Bianco ◽  
...  

Traditionally, breast cancer (BC) is divided into different subtypes defined by immunohistochemistry (IHC) according to the expression of hormone receptors and overexpression/amplification of human epidermal growth factor receptor 2 (HER2), with crucial therapeutic implications. In the last few years, the definition of different BC molecular subgroups within the IHC-defined subtypes and the identification of the important role that molecular heterogeneity can play in tumor progression and treatment resistance have inspired the search for personalized therapeutic approaches. In this scenario, translational research represents a key strategy to apply knowledge from cancer biology to the clinical setting, through the study of all the tumors “omics”, including genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Importantly, the introduction of new high-throughput technologies, such as next generation sequencing (NGS) for the study of cancer genome and transcriptome, greatly amplifies the potential and the applications of translational research in the oncology field. Moreover, the introduction of new experimental approaches, such as liquid biopsy, as well as new-concept clinical trials, such as biomarker-driven adaptive studies, may represent a turning point for BC translational research. </P><P> It is likely that translational research will have in the near future a significant impact on BC care, especially by giving us the possibility to dissect the complexity of tumor cell biology and develop new personalized treatment strategies.


2018 ◽  
Vol 19 (11) ◽  
pp. 3464 ◽  
Author(s):  
Zaza Khuchua ◽  
Aleksandr I. Glukhov ◽  
Arnold W. Strauss ◽  
Sabzali Javadov

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.


2019 ◽  
Vol 7 (5) ◽  
pp. 100-100 ◽  
Author(s):  
Remi Yoneyama ◽  
Hisashi Saji ◽  
Yasufumi Kato ◽  
Yujin Kudo ◽  
Yoshihisa Shimada ◽  
...  

PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Lars Tatenhorst ◽  
Eric Hahnen ◽  
Michael T. Heneka

The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.


Sign in / Sign up

Export Citation Format

Share Document