scholarly journals An Investigation on Self-Compacting Concrete Using Ultrafine Natural Steatite Powder as Replacement to Cement

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
P. Kumar ◽  
K. Sudalaimani ◽  
M. Shanmugasundaram

An experimental investigation was made on flow properties and compressive strength of self-compacting concrete (SCC) with ultrafine natural steatite powder (UFNSP) as replacement to cement. The tests were conducted on specimens with 5%, 10%, 15%, 20%, and 25% of replacement of UFNSP to the weight of cement and compared to the control specimens. The flow properties of all specimens were tested and checked for their limit with the existing guidelines. The compressive strength test was done on all specimens for strength of 7 days, 14 days, 28 days, and 56 days. The hardened samples were tested for their microstructural behavior and the elements Mg, Ca, and Si were mapped. Through mapping, the formations of M-S-H along with C-S-H are observed. The results show that the addition of UFNSP influences the flow property, by reducing the flow, and increases the compressive strength till 20% replacement. Further the addition of UFNSP increases the denseness of microstructure of the specimens thus resulting in the strength increment.

2013 ◽  
Vol 275-277 ◽  
pp. 2041-2044
Author(s):  
Feng Yan ◽  
Nan Pang

In this paper,the mechanical properties were studied,the self compacting concrete cubic compression strength,prismatic compressive strength test,discussed two kinds of relationship between intensity index.


2018 ◽  
Vol 4 (4) ◽  
pp. 776 ◽  
Author(s):  
Mushtaq Ahmad ◽  
Sana Ullah ◽  
Aneel Manan ◽  
Temple Chimuanya Odimegeu ◽  
Salmia Beddu

The study has conducted to determine the workability and compressive strength of the self –compacting concrete. The sand has replaced with quarry dust with the proportion of 10, 20, 30 and 40% and super plasticizer was added 0.9%. The experiments were carried out at the Infrastructure University Kuala Lumpur (IUKL) concrete laboratory. Slump flow, J- Ring tests were carried out to determine the workability of self-compacting concrete and compressive strength test was conducted on 7 days and 28th days of curing period. A finding of the study shows that workability and compressive strength has increased by addition of quarry dust. It is concluded that addition of quarry dust up to 30%  improve the workability of the self-compacting concrete and further addition of quarry dust decrease the workability. Additionally, compressive strength of the quarry dust modified self-compacting concrete shows the trend of higher compressive strength up to 30% addition of quarry dust with sand replacement and further addition decrease the compressive strength.


2018 ◽  
Author(s):  
erniati

Self Compacting Concrete (SCC) is one solution to get concrete construction which it has good resistance. Durability of concrete was obtained by the good concrete compaction to be done by a skilled workforce. However, one of the negligence that often occur in the field ie after casting they was ignoring curing of the hardening concrete. This study discusses the workability of fresh concrete and mechanical properties (compressive strength and splitting tensile strength) on SCC without curing. Testing of the concrete workability based on EFNARC standard. The mechanical properties test based on ASTM standards. The method Compressive strength test based on ASTM standards 39 / C 39M - 12a, whereas splitting tensile strength accordance standard ASTM C496 / C496M-11. The results of the study indicate that the SCC without curing effect on the reduction in compressive strength at ages 1, 3, 7, 28, and 90 days in a row at 4.11 MPa (16.1%); 4.90 MPa (13.9%); 6.64 MPa (13.1%); and 6, 72 MPa (12.75%). Splitting tensile strength decreased respectively by 0.1 MPa (3.25%); 0.26 MPa (7.99%); 0.4 MPa (9.52%); and 0.39 MPa (9.16%).


2018 ◽  
Author(s):  
Erniati Bachtiar

Self Compacting Concrete (SCC) is one solution to get concrete construction which it has good resistance. Durability of concrete was obtained by the good concrete compaction to be done by a skilled workforce. However, one of the negligence that often occur in the field ie after casting they was ignoring curing of the hardening concrete. This study discusses the workability of fresh concrete and mechanical properties (compressive strength and splitting tensile strength) on SCC without curing. Testing of the concrete workability based on EFNARC standard. The mechanical properties test based on ASTM standards. The method Compressive strength test based on ASTM standards 39 / C 39M - 12a, whereas splitting tensile strength accordance standard ASTM C496 / C496M-11. The results of the study indicate that the SCC without curing effect on the reduction in compressive strength at ages 1, 3, 7, 28, and 90 days in a row at 4.11 MPa (16.1%); 4.90 MPa (13.9%); 6.64 MPa (13.1%); and 6, 72 MPa (12.75%). Splitting tensile strength decreased respectively by 0.1 MPa (3.25%); 0.26 MPa (7.99%); 0.4 MPa (9.52%); and 0.39 MPa (9.16%).


2018 ◽  
Vol 203 ◽  
pp. 06022
Author(s):  
Salmia Beddu ◽  
Daud Mohamad ◽  
Fadzli Mohamed Nazri ◽  
Siti Nabihah Sadon ◽  
Mohamed Galal Elshawesh

This study investigates the self-curing concrete using baby polymer diapers as substitute method of curing process in order to improve mechanical and physical properties of concrete. Three different proportion of baby polymer diapers which are 1%, 3% and 5% were mix with concrete. Slump, compressive strength and drying shrinkage test were performed in order to study the workability, strength and durability of the concrete. All concrete were tested for 1, 3, 7, 14, and 28 days for drying shrinkage test. Meanwhile, all concrete were test at 3, 7 and 28 days for compressive strength test. Compressive strength of concrete containing 5% baby polymer diapers show the highest strength at 28 days compared to others percentage. Thus, it indicates that application of baby polymer diaper as self-cure agent can improve the concrete performances.


2014 ◽  
Vol 2 (1) ◽  
pp. 75-82
Author(s):  
Elivs M. Mbadike ◽  
N.N Osadebe

In this research work, the effect of mound soil on concrete produced with river sand was investigated. A mixed proportion of 1.1.8:3.7 with water cement ratio of 0.47 were used. The percentage replacement of river sand with mound soil is 0%, 5%, 10%, 20%, 30% and 40%. Concrete cubes of 150mm x 150mm x150mm of river sand/mound soil were cast and cured at 3, 7, 28, 60 and 90 days respectively. At the end of each hydration period, the three cubes for each hydration period were crushed and their average compressive strength recorded. A total of ninety (90) concrete cubes were cast. The result of the compressive strength test for 5- 40% replacement of river sand with mound soil ranges from 24.00 -42.58N/mm2 a against 23.29-36.08N/mm2 for the control test (0% replacement).The workability of concrete produced with 5- 40% replacement of river sand with mound soil ranges from 47- 62mm as against 70mm for the control test.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


2019 ◽  
Vol 3 (2) ◽  
pp. 81-89
Author(s):  
Angga Pirman Firdaus ◽  
Jonbi

Indonesia ranks second in the world's largest plastic waste producer after China. Each year, Indonesia can contributeup to 187.2 million tons of plastic waste, while China reaches 262.9 million tons of plastic waste. Based on the data, one way to utilize plastic waste by using plastic waste as a mixture of concrete, where the plastic used is polypropylene (PP) plastic with different percentage of concrete mixture, the test includes compressive strength test and tensile concrete. The results of concrete compressive strength testing with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in aggregate aggregate mixture decreased by 5.15%, 6.89% and 13.53%. As for the result of concrete tensile strength test with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in crude aggregate mixture decreased 17,61%, 24,13% dan 23,24%.


Sign in / Sign up

Export Citation Format

Share Document