scholarly journals Copper Incorporation into CdS Thin Films by Ionic Exchange in an Aqueous Solution Process at Room Temperature

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
E. Flores-García ◽  
M. A. Hernández-Landaverde ◽  
P. González-García ◽  
R. Ramírez-Bon

Cadmium sulfide (CdS) thin films were deposited, on glass substrates, at 70°C for 120 min using an ammonium-free chemical bath deposition process. After deposition, the films were placed in a CuCl2 solution for 45, 60, 75, and 90 min, respectively, for their ion exchange, generating CdxCu1-xS films. The obtained films were analyzed by X-ray diffraction, Raman spectroscopy, X-ray wavelength dispersion spectrometry, and scanning electron microscopy. The reference CdS films showed a homogeneous appearance and a yellowish color; elapsing the immersion time, the films changed their color showing a greenish appearance. The X-ray analysis indicated that the CdS films developed a hexagonal structure with preferential orientation along the plane (002). During the ion exchange, a decrease in the intensity of the reflection (002) was observed as well as a slight displacement of this reflection towards higher values of 2θ derived from the substitution of Cd atoms by Cu atoms. The WDS analysis revealed that approximately 10% of the cadmium atoms were replaced by copper ones after 90 min of immersion.

2019 ◽  
Vol 12 (25) ◽  
pp. 138-147
Author(s):  
Haidar Jwad Abdul-Ameer Al-Rehamey

Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the samples was determined from optical trasmittance spectra. It is observed that the direct band gap energy for as deposited and annealed films are (2.55, 2.45) eV, respectively. The effect of annealing at 250 oC for 1hr in air on optical and photoconductivity of films under various intensity of illuminations (43.81 and 115.12) mW/cm2 was studied. The dark and photocurrents of the annealed films were found to be greater than that of as deposited.


2011 ◽  
Vol 306-307 ◽  
pp. 265-268
Author(s):  
Xue Yan Zhang ◽  
Xiao Yu Liu ◽  
Han Bin Wang ◽  
Xi Jian Zhang ◽  
Qing Pu Wang ◽  
...  

Cadmium sulfide (CdS) thin films with (111) preferential orientation were grown on glass substrates at room temperature by radio frequency (R.F.) magnetron sputtering. The structural and optical properties of CdS films have been investigated by X-ray diffraction, Scanning Electron Microscope micrographs, PL spectra and transmittance spectra. The grain sizes have been evaluated. The transmission spectra of the obtained films reveal a relatively high transmission coefficient (80%) in the visible range. All these results show that the grain sizes increased while the optical band gap decreased with increasing the thickness of CdS films.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


2014 ◽  
Vol 1630 ◽  
Author(s):  
Abeer A. Al-Yafeai ◽  
Sovannary Phok ◽  
Sahar A. Al-Shaibani ◽  
Shifaa M. Al-Baity ◽  
Esmaeel M. Al-Hammadi ◽  
...  

ABSTRACTThis investigation is a comprehensive study of the effect of ammonium acetate on the electrical, optical, morphology and microstructure of CdS thin films grown by Chemical Bath Deposition method (CBD). Two sets of CdS thin films (A and B) were deposited on glass substrates at 60°C for 60 min. The films were deposited using chemical bath solution that consists of cadmium acetate, ammonium hydroxide, and thiourea. However, ammonium acetate was added into the chemical bath used to deposit set (B), where ammonium acetate was eliminated from bath solution used to deposit set (A). The films’ morphology was examined by Field Emission Scanning Electron Microscopy (FE-SEM), whereas, the chemical composition was investigated by Electron Probe Micro-Analyzer (EPMA). The X-Ray Diffraction (XRD) θ/2θ technique was applied to study the structure of the films. Atomic Force Microscopy (AFM) was used to measure the average surface roughness of the films, and Dektak Profilometer was used to determine the CdS films thickness. The optical and electrical properties for the films were determined using UV-Vis-NIR Spectrometer, and the Hall Effect technique, respectively. The highest carrier mobility was obtained for the films deposited in an ammonium acetate free bath. However, both films were polycrystalline with hexagonal structure exhibiting a tendency toward <002> texture, that increase with increasing the pH value of the chemical bath.


1996 ◽  
Vol 426 ◽  
Author(s):  
Yuming Zhu ◽  
Dull Mao ◽  
D. L. Williamson ◽  
J. U. Trefny

AbstractChemical-bath-deposited CdS thin films from an ammonia-thiourea solution have been studied by x-ray diffraction, surface profilometry, ellipsometry, and other techniques. The compactness of the CdS films, structural properties of the films, and the growth mechanism have been investigated. For the deposition conditions used, we found that the film compactness reaches its maximum at a deposition time of 35 minutes. Films grown at longer deposition times are less compact, consistent with the CdS duplex layer structure proposed previously. This transition from compact layer growth to porous layer growth is important for depositing CdS films in solar cell applications. Based on x-ray diffraction (XRD) studies, we were able to determine the crystal phase, lattice constant, and other structural properties.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Atef S. Gadalla ◽  
Hamdan A. S. Al-shamiri ◽  
Saad Melhi Alshahrani ◽  
Huda F. Khalil ◽  
Mahmoud M. El Nahas ◽  
...  

In this study, cadmium Sulfide (CdS) thin films were synthesized on quartz substrates using an infrared pulsed laser deposition (IR-PLD) technique under high vacuum (~10−6 Torr) conditions. X-ray diffraction was used to evaluate the structural features. According to X-ray analysis, the deposited CdS films are crystalline and have a favored orientation on a plane (110) of an orthorhombic. The peak intensity and the average crystallite size increases with increasing the film thickness. After annealing at 300 °C, the orthorhombic phase transformed into a predominant hexagonal phase and the same result was obtained by SEM photographs as well. Spectrophotometric measurements of transmittance and reflectance of the CdS films were used to derive optical constants (n, k, and absorption coefficient α). The optical band gap energy was found to be 2.44 eV. The plasma plume formation and expansion during the film deposition have also been discussed. The photocurrent response as a function of the incident photon energy E (eV) at different bias voltages for different samples of thicknesses (85, 180, 220 and 340 nm) have been studied, indicating that the photocurrent increases by increasing both the film thickness and photon energy with a peak in the vicinity of the band edge. Thus, the prepared CdS films are promising for application in optoelectronic field.


2008 ◽  
Vol 5 (3) ◽  
pp. 387-390
Author(s):  
Baghdad Science Journal

In this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.


Author(s):  
Fatma Salamon

CdS thin films were prepared by chemical bath deposition technique (CBD) onto the glass substrates at different conditions of preparation. The obtained samples are studied by X-Ray diffraction (XRD). The XRD patterns of CdS samples revealed the formation with a hexagonal crystal structure P36mc, and the clear effect of the concentration of thiourea, cadmium sulfide, NaOH, time and temperature deposition, and annealing temperature, on the structure of the prepared thin films. through the study, we found that the samples have preferred orientation along [002], also the thickness of thin films decrease with deposition time after certain value, with the appearance of free cadmium. It has been found that the 200°C is the best temperature for annealing to improve the other structural and physical properties of films.


2021 ◽  
Author(s):  
Hamdan Ali Sultan Ali Sultan Al-shamiri ◽  
Atef S. Gadalla ◽  
Huda F. Khalil ◽  
Mahmoud M. El Nahas ◽  
Mohamed A. Khedr

Abstract Cadmium Sulfide (Cds) thin films were synthesized on quartz substrates using infrared pulsed laser deposition (IR-PLD) technique under high vacuum (~ 10− 6 Torr). X-ray diffraction was used to evaluate the structural features. According to X-ray analysis the deposited CdS films are crystalline and have a favored orientation on a plane (110) of an orthorhombic system and the peak intensity and the average crystallite size increases with increasing the film thickness. After annealing at 300oC the orthorhombic phase transformed into predominant hexagonal phase and the same result was obtained by SEM photographs. Spectrophotometric measurements of transmittance and reflectance of the Cds films were used to derive optical constants (n, k and absorption coefficient α). The optical band gap energy was found to be 2.44 eV. The plasma plume formation and expansion during the film deposition have been discussed. The photocurrent response as a function of the incident photon energy E (eV) at different bias voltages for different samples of thicknesses (85, 180, 220 and 340 nm) have been studied, indicating that the photocurrent increases by increasing both the film thickness and photon energy with a peak in the vicinity of the band edge. Thus, the prepared Cds films are promising for application in optoelectronic field.


Sign in / Sign up

Export Citation Format

Share Document