scholarly journals OK-432 Acts as Adjuvant to Modulate T Helper 2 Inflammatory Responses in a Murine Model of Asthma

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Cheng-Jang Wu ◽  
Pin-Hsun Tseng ◽  
Cheng-Chi Chan ◽  
Sara Quon ◽  
Li-Chen Chen ◽  
...  

Enhanced type 2 helper T (Th2) cell responses to inhaled harmless allergens are strongly associated with the development of allergic diseases. Antigen formulated with an appropriate adjuvant can elicit suitable systemic immunity to protect individuals from disease. Although much has been learned about Th1-favored immunomodulation of OK-432, a streptococcal preparation with antineoplastic activity, little is known about its adjuvant effect for allergic diseases. Herein, we demonstrate that OK-432 acts as an adjuvant to favor a systemic Th1 polarization with an elevation in interferon- (IFN-) γ and ovalbumin- (OVA-) immunoglobulin (Ig) G2a. Prior vaccination with OK-432 formulated against OVA attenuated lung eosinophilic inflammation and Th2 cytokine responses that were caused by challenging with OVA through the airway. This vaccination with OK-432 augmented the ratios of IFN-γ/interleukin- (IL-) 4 cytokine and IgG2a/IgG1 antibody compared to the formulation with Th2 adjuvant aluminum hydroxide (Alum) or antigen only. The results obtained in this study lead us to propose a potential novel adjuvant for clinical use such as prophylactic vaccination for pathogens and immunotherapy in atopic diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Simon Schreiber ◽  
Christoph M. Hammers ◽  
Achim J. Kaasch ◽  
Burkhart Schraven ◽  
Anne Dudeck ◽  
...  

The function of T cells is critically dependent on their ability to generate metabolic building blocks to fulfil energy demands for proliferation and consecutive differentiation into various T helper (Th) cells. Th cells then have to adapt their metabolism to specific microenvironments within different organs during physiological and pathological immune responses. In this context, Th2 cells mediate immunity to parasites and are involved in the pathogenesis of allergic diseases including asthma, while CD8+ T cells and Th1 cells mediate immunity to viruses and tumors. Importantly, recent studies have investigated the metabolism of Th2 cells in more detail, while others have studied the influence of Th2 cell-mediated type 2 immunity on the tumor microenvironment (TME) and on tumor progression. We here review recent findings on the metabolism of Th2 cells and discuss how Th2 cells contribute to antitumor immunity. Combining the evidence from both types of studies, we provide here for the first time a perspective on how the energy metabolism of Th2 cells and the TME interact. Finally, we elaborate how a more detailed understanding of the unique metabolic interdependency between Th2 cells and the TME could reveal novel avenues for the development of immunotherapies in treating cancer.


2016 ◽  
Vol 113 (5) ◽  
pp. E568-E576 ◽  
Author(s):  
Jimena Perez-Lloret ◽  
Isobel S. Okoye ◽  
Riccardo Guidi ◽  
Yashaswini Kannan ◽  
Stephanie M. Coomes ◽  
...  

There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ+CD4+ T-helper 2 (TH2) cells orchestrate the type-2–driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081–E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4gfp+αβ+CD4+ TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell–intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24−/− T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1–regulated signaling. Following this prediction, we found that Trim24−/− T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β–mediated activation in vitro and in vivo, and fail to respond to IL-1β–exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell–intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4565-4573 ◽  
Author(s):  
Akira Suto ◽  
Hiroshi Nakajima ◽  
Koichi Hirose ◽  
Kotaro Suzuki ◽  
Shin-ichiro Kagami ◽  
...  

Interleukin 21 (IL-21) has recently been identified as a multifunctional cytokine that induces the proliferation of T cells and B cells and differentiation of natural killer cells. To determine whether IL-21 regulates IL-4–mediated immune responses, we examined the effect of IL-21 on antigen-specific IgE production in mice. We also examined the effect of IL-21 on IL-4–induced IgE production from B cells and antigen-induced T-helper 2 (Th2) cell differentiation. The in vivo injection of IL-21 prevented antigen-specific IgE but not IgG2a production on immunization. IL-21 did not affect Th2 cell differentiation or IL-4 production from CD4+ T cells but directly inhibited IL-4–induced IgE production from B cells at single-cell levels. Moreover, IL-21 inhibited IL-4–induced germ line Cε transcription in B cells without the inhibition of signal transducer and activator of transcription 6 (Stat6) activation. Taken together, these results indicate that IL-21 down-regulates IgE production from IL-4–stimulated B cells through the inhibition of germ line Cε transcription and thus suggest that IL-21 may be useful for the treatment of IgE-dependent allergic diseases.


2004 ◽  
Vol 200 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Hendrik Jan de Heer ◽  
Hamida Hammad ◽  
Thomas Soullié ◽  
Daniëlle Hijdra ◽  
Nanda Vos ◽  
...  

Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma.


2018 ◽  
Author(s):  
Julia Matthias ◽  
Julia Maul ◽  
Rebecca Noster ◽  
Hanna Meinl ◽  
Ying-Yin Chao ◽  
...  

One sentence summarySodium is an ionic checkpoint for the induction and amplification of human Th2 cell responses and shapes the atopic skin microenvironment, where it could serve as a novel therapeutic target for Th2 mediated diseases.AbstractThere has been a strong increase in the incidence of allergic diseases over the last 50 years. Environmental factors most likely account for this phenomenon. However, the nature of these factors and the mode of action by which they induce the type 2 immune deviation, which is characteristic of atopic diseases, remains unclear. It has previously been reported that dietary sodium chloride promotes the polarization of Th17 cells with implications for autoimmune diseases such as multiple sclerosis. Here, we demonstrate that sodium chloride also potently promotes Th2 cell responses on multiple regulatory levels. Sodium chloride enhanced IL-4 and IL-13 production while suppressing IFN-γproduction in effector T cells. It diverted alternative T cell fates into the Th2 cell phenotype and also inducedde novoTh2 cell polarization from naïve T cell precursors. Mechanistically, it exerted its effects via the osmosensitive transcription factor NFAT-5 and the kinase SGK-1, which regulated Th2 signature cytokines and master transcription factors in hyperosmolar salt conditions. The skin of patients suffering from atopic dermatitis contained highly elevated amounts of sodium compared to non-lesional atopic and healthy skin. This demonstrates that sodium chloride represents a so far overlooked cutaneous microenvironmental factor in atopic dermatitis that can induce Th2 cell responses, the orchestrators of allergic diseases. Together, our data propose ionic signaling through sodium chloride as a novel checkpoint and potential therapeutic target for type 2 immunity and its associated allergic diseases.


2021 ◽  
Vol 118 (32) ◽  
pp. e2106311118
Author(s):  
Darshan N. Kasal ◽  
Zhitao Liang ◽  
Maile K. Hollinger ◽  
Crystal Y. O’Leary ◽  
Wioletta Lisicka ◽  
...  

The type 2 helper effector program is driven by the master transcription factor GATA3 and can be expressed by subsets of both innate lymphoid cells (ILCs) and adaptive CD4+ T helper (Th) cells. While ILC2s and Th2 cells acquire their type 2 differentiation program under very different contexts, the distinct regulatory mechanisms governing this common program are only partially understood. Here we show that the differentiation of ILC2s, and their concomitant high level of GATA3 expression, are controlled by a Gata3 enhancer, Gata3 +674/762, that plays only a minimal role in Th2 cell differentiation. Mice lacking this enhancer exhibited defects in several but not all type 2 inflammatory responses, depending on the respective degree of ILC2 and Th2 cell involvement. Our study provides molecular insights into the different gene regulatory pathways leading to the acquisition of the GATA3-driven type 2 helper effector program in innate and adaptive lymphocytes.


2006 ◽  
Vol 84 (3) ◽  
pp. 303-311 ◽  
Author(s):  
Romy Fischer ◽  
Hajer Debbabi ◽  
Michel Dubarry ◽  
Prosper Boyaka ◽  
Daniel Tomé

In recent years, Lf has gained increasing interest as a result of its protective effects against a variety of diseases. While iron binding and interactions with mammalian receptors and microbial components are the best described mechanisms of action, recent studies have provided evidence that Lf properties may be related to immunoregulatory effects on Th1/Th2 cell activities. In vitro and in vivo experiments show that Lf is able to stimulate the differentiation of T cells from their immature precursors through the induction of the CD4 antigen. Studies performed under nonpathogenic conditions have shown distinct results with regard to the ability of Lf to support the proliferation and differentiation of Th cells into the Th1 or the Th2 phenotype. In addition, Lf plays different roles in diseases by affecting the Th1/Th2 cytokine balance in a manner dependent on the host’s immune status. Thus, Lf could cause a Th1 polarization in diseases in which the ability to control infection or tumor relies on a strong Th1 response. Lf may also reduce the Th1 component to limit excessive inflammatory responses. Finally, Lf may provide protection against Th1- or Th2-induced diseases, such as autoimmune or allergic diseases, through correction of the Th1/Th2 imbalance.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 688
Author(s):  
Jeng-Chang Chen ◽  
Cheng-Chi Chan ◽  
Nai-Chun Ting ◽  
Ming-Ling Kuo

We previously demonstrated that fetal allergen exposure caused T-helper 2 (Th2) cell sensitization. Although neonates are immunologically more mature than fetuses, asthmatic lungs were reportedly mitigated by neonatal allergen administration, mechanically referring to regulatory T-cells and TGF-β signaling but lacking the immunological profiles after neonatal exposure. To reappraise the immunological outcome of neonatal allergen exposure, we injected adjuvant-free ovalbumin intraperitoneally into 2-day-old BALB/c neonates, followed by aerosolized ovalbumin inhalation in adulthood. Mice were examined for the immunological profiles specifically after neonatal exposures, lung function and histology (hematoxylin-eosin or periodic acid Schiff staining), and gene expressions of intrapulmonary cytokines (IL-4, IL-5, IL-13 and IFN-γ) and chemokines (CCL17, CCL22, CCL11 and CCL24). Neonatal ovalbumin exposure triggered Th2-skewed sensitization and ovalbumin-specific IgE production. Subsequent ovalbumin inhalation in adulthood boosted Th2 immunity and caused asthmatic lungs with structural and functional alterations of airways. Gender difference mainly involved airway hyperresponsiveness and resistance with greater female susceptibility to methacholine bronchospastic stimulation. In lungs, heightened chemoattractant gene expressions were only granted to neonatally ovalbumin-sensitized mice with aerosolized ovalbumin stress in adulthood, and paralleled by upregulated Th2 cytokine genes. Thus, aeroallergen stress in atopic individuals might upregulate the expression of intrapulmonary chemoattractants to recruit Th2 cells and eosinophils into the lungs, pathogenically linked to asthma development. Conclusively, murine neonates were sensitive to allergen exposures. Exposure events during neonatal stages were crucial to asthma predisposition in later life. These findings from a murine model point to allergen avoidance in neonatal life, possibly even very early in utero, as the best prospect of primary asthma prevention.


Sign in / Sign up

Export Citation Format

Share Document